Dual-user localization using ARKit and nearby interaction for iOS devices

This dissertation delves into the burgeoning field of indoor ranging and dualuser Augmented Reality (AR) techniques, primarily focusing on the integration and comparison of Visual Inertial Odometry (VIO) and Ultra-Wideband (UWB) technologies. The motivation behind this research stems from the need t...

Full description

Saved in:
Bibliographic Details
Main Author: Zhang, Yuyang
Other Authors: Ling Keck Voon
Format: Thesis-Master by Coursework
Language:English
Published: Nanyang Technological University 2024
Subjects:
Online Access:https://hdl.handle.net/10356/174837
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This dissertation delves into the burgeoning field of indoor ranging and dualuser Augmented Reality (AR) techniques, primarily focusing on the integration and comparison of Visual Inertial Odometry (VIO) and Ultra-Wideband (UWB) technologies. The motivation behind this research stems from the need to improve accuracy and stability in indoor ranging systems, particularly for dual-user AR applications. The study systematically explores the advantages and limitations of VIO and UWB localization in various indoor environments, employing rigorous experimental methods to assess their performance under different conditions. Significant emphasis is placed on the development and application of a Kalman filter-based approach to fuse the data from both VIO and UWB ranging, aiming to enhance the overall accuracy and stability of indoor ranging. The results demonstrate notable improvements in distance estimation precision and positioning stability, highlighting the potential of this integrated approach for future dual-user AR applications. This work not only contributes to the advancement of indoor ranging technologies but also sets a foundation for further exploration in dual-user AR environments.