Reinforcement learning for option pricing and hedging, a practical edge over black-scholes-merton model

This thesis explores two frameworks leveraging on modern Reinforcement Learning (RL) techniques for pricing and dynamic hedging of an option under practical market conditions such as transaction costs, trader risk-aversion, and stochastic volatility which the Black-Scholes-Merton’s (BSM) model fails...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yang, Daniel
مؤلفون آخرون: Bo An
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/175061
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:This thesis explores two frameworks leveraging on modern Reinforcement Learning (RL) techniques for pricing and dynamic hedging of an option under practical market conditions such as transaction costs, trader risk-aversion, and stochastic volatility which the Black-Scholes-Merton’s (BSM) model fails to consider. In this thesis, model-free methods of Q-learning and Deep Reinforcement Learning (DRL) are formulated under these real-world market settings with minimal market assumptions to dynamically hedge in an incomplete market where perfect Delta-hedging through the BSM model is not possible.