Reinforcement learning for option pricing and hedging, a practical edge over black-scholes-merton model
This thesis explores two frameworks leveraging on modern Reinforcement Learning (RL) techniques for pricing and dynamic hedging of an option under practical market conditions such as transaction costs, trader risk-aversion, and stochastic volatility which the Black-Scholes-Merton’s (BSM) model fails...
Saved in:
主要作者: | Yang, Daniel |
---|---|
其他作者: | Bo An |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/175061 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
On the Delta-hedging of the option price on future from the Black-Scholes equation
由: Amnuay Kananthai, et al.
出版: (2018) -
Alternative methods to derive the black-scholes-merton equation
由: Nattakorn Phewchean, et al.
出版: (2020) -
On the parametric interest of the option price of stock from black-scholes equation
由: Amnuay Kananthai, et al.
出版: (2020) -
On the white noise of the price of stocks related to the option prices from the black-scholes equation
由: A. Kananthai, et al.
出版: (2018) -
On the positive colored noise related to the option price from black-scholes equation
由: Amnuay Kananthai
出版: (2018)