Guaranteed hierarchical reinforcement learning

Reinforcement learning (RL) is a sub-field of machine learning that aims to train an agent in an interactive environment to sequentially make choices via a process of trial-and-error, to maximize a total reward over time. RL has been studied for decades and has a strong and established theoretica...

全面介紹

Saved in:
書目詳細資料
主要作者: Ang, Riley Xile
其他作者: Arvind Easwaran
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2024
主題:
PAC
在線閱讀:https://hdl.handle.net/10356/175473
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Reinforcement learning (RL) is a sub-field of machine learning that aims to train an agent in an interactive environment to sequentially make choices via a process of trial-and-error, to maximize a total reward over time. RL has been studied for decades and has a strong and established theoretical foundation. Practically, it has gained prominence owing to projects in a wide range of fields including gaming, robotics, automation, etc. Despite its contributions and rise to popularity, RL is often resource-intensive in both its training time and memory requirements. Successfully training an agent with low margin of errors and high confidence bounds continues to remain an open research problem. Consequently, the focus of this project will be to use existing RL algorithms, particularly Speedy Q-Learning (SQL), a variant of tabular model-free Q-Learning, to design a Hierarchical Reinforcement Learning (HRL) agent in a continuous state space setting. Additionally, this project aims to evaluate the overall performance of the agent against proven theoretical bounds with the Probably Approximately Correct (PAC) framework.