Modeling and predicting the beam properties from grating structures using deep neural network

In this study, the optical properties of light beam coupled out from grating structures are simulated, modeled, and predicted. Gratings with various radius of curvature (R) are designed, where optical properties of light coupled out from the grating are modeled with deep neural network (DNN). After...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Lim, Yu Dian, Zhao, Peng, Guidoni, Luca, Likforman, Jean-Pierre, Tan, Chuan Seng
مؤلفون آخرون: School of Electrical and Electronic Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/175559
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this study, the optical properties of light beam coupled out from grating structures are simulated, modeled, and predicted. Gratings with various radius of curvature (R) are designed, where optical properties of light coupled out from the grating are modeled with deep neural network (DNN). After omitting the underfitted and overfitted model, the ideally-fitted model accurately predicts the beam waist of light from R = 30 μm with average percentage error (APE) of 7.3%. At the same time, the ideally-fitted model exhibits training/validation loss APE of 2.2%, indicating that the model is well-fitted.