Gradient boosted graph convolutional network on heterophilic graph
Graph Neural Networks (GNNs) are impressive models that have been highly successful in performing graphical analysis and learning. However, GNNs are known to be outstanding in learning from homophilic graphs but are subpar in learning from heterophilic graphs. On the other hand, Gradient Boosted Dec...
Saved in:
主要作者: | Seah, Ming Yang |
---|---|
其他作者: | Tay Wee Peng |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/176770 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Efficient gradient boosted decision tree training on GPUs
由: Zeyi Wen, et al.
出版: (2020) -
Boosting privately: Federated extreme gradient boosting for mobile crowdsensing
由: LIU, Yang, et al.
出版: (2020) -
Poisson kernel: avoiding self-smoothing in graph convolutional networks
由: Yang, Ziqing, et al.
出版: (2022) -
Accumulated decoupled learning with gradient staleness mitigation for convolutional neural networks
由: Zhuang, Huiping, et al.
出版: (2024) -
Multibranch adaptive fusion graph convolutional network for traffic flow prediction
由: Zan, Xin, et al.
出版: (2023)