Anomaly detection for X-ray of PCB & IC images

This project investigates the use of deep learning models for defect detection in printed circuit boards and integrated circuits using YOLOv9. We developed a customized neural network model that take binary mask images and identifies defects in each image. The methodology included converting the dat...

全面介紹

Saved in:
書目詳細資料
主要作者: Heng, Daryl Ew-Jynn
其他作者: Wen Bihan
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2024
主題:
在線閱讀:https://hdl.handle.net/10356/177102
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This project investigates the use of deep learning models for defect detection in printed circuit boards and integrated circuits using YOLOv9. We developed a customized neural network model that take binary mask images and identifies defects in each image. The methodology included converting the data annotations to fit YOLOv9’s format, improving model accuracy by selecting appropriate confidence threshold. Results from experiments indicated an improvement in detection precision, reducing false predictions. The study shows that deep learning techniques can be effectively used to improve printed circuit boards and integrated circuits quality control. This work has broad implications for automated manufacturing processes, highlighting the potential for deep learning to improve industrial quality assurance practices.