Anomaly detection for X-ray of PCB & IC images
This project investigates the use of deep learning models for defect detection in printed circuit boards and integrated circuits using YOLOv9. We developed a customized neural network model that take binary mask images and identifies defects in each image. The methodology included converting the dat...
Saved in:
主要作者: | Heng, Daryl Ew-Jynn |
---|---|
其他作者: | Wen Bihan |
格式: | Final Year Project |
語言: | English |
出版: |
Nanyang Technological University
2024
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/177102 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Interactive e-learning environment to printed circuit board design
由: Chai, Jia Zhe
出版: (2024) -
Phase Fourier Reconstruction for Anomaly Detection on Metal Surface Using Salient Irregularity
由: Hung, Tzu-Yi, et al.
出版: (2017) -
Deep learning based solder joint defect detection on industrial printed circuit board X-ray images
由: Zhang, Qianru, et al.
出版: (2023) -
Hardware design for multi-sensor system based on DSP
由: Amadeus, Marcello
出版: (2024) -
AnomalyCLIP: Object-agnostic prompt learning for zero-shot anomaly detection
由: ZHOU, Qihang, et al.
出版: (2024)