Ranking-aware contrastive learning with large language models
Generating high-quality word and sentence representations is a foundational task in natural language processing (NLP). In recent years, various embedding methodologies have been proposed, notably those leveraging the capabilities of large language models for in-context learning. Research has shown t...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis-Master by Coursework |
Language: | English |
Published: |
Nanyang Technological University
2024
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/177983 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Generating high-quality word and sentence representations is a foundational task in natural language processing (NLP). In recent years, various embedding methodologies have been proposed, notably those leveraging the capabilities of large language models for in-context learning. Research has shown that language model performance can be enhanced by integrating a query with multiple examples. Inspired by this research, this project explores the use of a contrastive learning framework combined with ranking knowledge to enhance the generation and retrieval of sentence embeddings, aiming to more accurately identify the most similar sentences in in-context learning scenarios. Subsequent experiments tested various ranking strategies within the contrastive learning framework, yielding novel insights and conclusions. |
---|