Caspase interaction of anti-apoptotic Livin as well as the Vacuolar ATPase (V-ATPase) and structural insights into the subunit d and a of the yeast V-ATPase
Apoptosis is a critical process to remove the non-functional and redundant cells regulated by pro- and anti-apoptotic factors. Perturbation of balance between pro- and anti-apoptotic components is the leading cause of several physiopathological conditions such as neurodegenerative and cancer maligna...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/19015 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-19015 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-190152023-02-28T18:49:45Z Caspase interaction of anti-apoptotic Livin as well as the Vacuolar ATPase (V-ATPase) and structural insights into the subunit d and a of the yeast V-ATPase Thaker, Youg Raj Gerhard Gruber School of Biological Sciences DRNTU::Science::Biological sciences::Human anatomy and physiology Apoptosis is a critical process to remove the non-functional and redundant cells regulated by pro- and anti-apoptotic factors. Perturbation of balance between pro- and anti-apoptotic components is the leading cause of several physiopathological conditions such as neurodegenerative and cancer malignancies. Here, the pro-apoptotic cellular protein, ARTS as well as an anti-apoptotic protein, Livin, a family member of inhibitor of apoptosis have been studied. Results showed that ARTS is not the target of Livin E3 ligase activity in apoptotic cells co-expressing ARTS and Livin. In turn, Livin was found to undergo cleavage in ARTS promoted apoptosis which was independent of its self-ubiquitination activity, normally observed in healthy cells. The exhaustion of Livin during ARTS-promoted apoptosis could partially be suppressed by the caspase inhibitors, implying a possible role of caspases concomitant with high active caspase 7 levels found in ARTS-promoted staurosporine-induced apoptosis. Not only Livin, caspase do cleave several important cellular components during apoptosis and here, I have identified subunit d of V-ATPase as a new target of caspase 3. V ATPases do play critical role in health and disease by maintaining proper acid/base balance pH. Additionally, homogenous protein preparation of yeast subunit d protein was used to determine its first low resolution shape by small angle X-ray spectroscopy (SAXS), revealing two distinct domains of 6.5 nm and 3.5 nm widths forming a “boxing glove” shape. Using previously solved low resolution structure of VO domain as a template, subunit d could be assigned inside the VO, allowing its clear localization on the top of VO domain of V-ATPase. Moreover, biochemical approaches of fluorophore labeling, tryptic digestion and MALDI-TOF analysis led to the identification of a cysteine bridge between Cys36 and Cys329. DOCTOR OF PHILOSOPHY (SBS) 2009-09-09T07:58:19Z 2009-09-09T07:58:19Z 2009 2009 Thesis Thaker, Y. R. (2009). Caspase interaction of anti-apoptotic Livin as well as the vacuolar ATPase (V-ATPase) and structural insights into the subunit d and a of the yeast V-ATPase. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/19015 10.32657/10356/19015 en 190 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Biological sciences::Human anatomy and physiology |
spellingShingle |
DRNTU::Science::Biological sciences::Human anatomy and physiology Thaker, Youg Raj Caspase interaction of anti-apoptotic Livin as well as the Vacuolar ATPase (V-ATPase) and structural insights into the subunit d and a of the yeast V-ATPase |
description |
Apoptosis is a critical process to remove the non-functional and redundant cells regulated by pro- and anti-apoptotic factors. Perturbation of balance between pro- and anti-apoptotic components is the leading cause of several physiopathological conditions such as neurodegenerative and cancer malignancies. Here, the pro-apoptotic cellular protein, ARTS as well as an anti-apoptotic protein, Livin, a family member of inhibitor of apoptosis have been studied. Results showed that ARTS is not the target of Livin E3 ligase activity in apoptotic cells co-expressing ARTS and Livin. In turn, Livin was found to undergo cleavage in ARTS promoted apoptosis which was independent of its self-ubiquitination activity, normally observed in healthy cells. The exhaustion of Livin during ARTS-promoted apoptosis could partially be suppressed by the caspase inhibitors, implying a possible role of caspases concomitant with high active caspase 7 levels found in ARTS-promoted staurosporine-induced apoptosis.
Not only Livin, caspase do cleave several important cellular components during apoptosis and here, I have identified subunit d of V-ATPase as a new target of caspase 3. V ATPases do play critical role in health and disease by maintaining proper acid/base balance pH. Additionally, homogenous protein preparation of yeast subunit d protein was used to determine its first low resolution shape by small angle X-ray spectroscopy (SAXS), revealing two distinct domains of 6.5 nm and 3.5 nm widths forming a “boxing glove” shape. Using previously solved low resolution structure of VO domain as a template, subunit d could be assigned inside the VO, allowing its clear localization on the top of VO domain of V-ATPase. Moreover, biochemical approaches of fluorophore labeling, tryptic digestion and MALDI-TOF analysis led to the identification of a cysteine bridge between Cys36 and Cys329. |
author2 |
Gerhard Gruber |
author_facet |
Gerhard Gruber Thaker, Youg Raj |
format |
Theses and Dissertations |
author |
Thaker, Youg Raj |
author_sort |
Thaker, Youg Raj |
title |
Caspase interaction of anti-apoptotic Livin as well as the Vacuolar ATPase (V-ATPase) and structural insights into the subunit d and a of the yeast V-ATPase |
title_short |
Caspase interaction of anti-apoptotic Livin as well as the Vacuolar ATPase (V-ATPase) and structural insights into the subunit d and a of the yeast V-ATPase |
title_full |
Caspase interaction of anti-apoptotic Livin as well as the Vacuolar ATPase (V-ATPase) and structural insights into the subunit d and a of the yeast V-ATPase |
title_fullStr |
Caspase interaction of anti-apoptotic Livin as well as the Vacuolar ATPase (V-ATPase) and structural insights into the subunit d and a of the yeast V-ATPase |
title_full_unstemmed |
Caspase interaction of anti-apoptotic Livin as well as the Vacuolar ATPase (V-ATPase) and structural insights into the subunit d and a of the yeast V-ATPase |
title_sort |
caspase interaction of anti-apoptotic livin as well as the vacuolar atpase (v-atpase) and structural insights into the subunit d and a of the yeast v-atpase |
publishDate |
2009 |
url |
https://hdl.handle.net/10356/19015 |
_version_ |
1759857948408938496 |