Characterization of read sensors in hard disk drives

One of the biggest challenges in a 10 Tb/in2 recording is the impossible reduction of the current sensor thickness to meet the linear resolution requirement, even with today’s technology. Current tunnel magnetoresistance (TMR) read head has reached its limit due to its high product of resistance and...

Full description

Saved in:
Bibliographic Details
Main Author: Liew, Li Ting.
Other Authors: Gan Chee Lip
Format: Final Year Project
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10356/36160
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-36160
record_format dspace
spelling sg-ntu-dr.10356-361602023-03-04T15:36:35Z Characterization of read sensors in hard disk drives Liew, Li Ting. Gan Chee Lip School of Materials Science and Engineering A*STAR Data Storage Institute Han Guchang DRNTU::Engineering::Materials::Microelectronics and semiconductor materials One of the biggest challenges in a 10 Tb/in2 recording is the impossible reduction of the current sensor thickness to meet the linear resolution requirement, even with today’s technology. Current tunnel magnetoresistance (TMR) read head has reached its limit due to its high product of resistance and area (RA) and the shield to shield spacing (SSS) in current perpendicular-to-plane giant magnetoresistance (CPP-GMR) read head remains a bottle neck issue to achieve a high data recording. Therefore, differential dual spin valve (DDSV) is proposed to alleviate this problem, assuming that GMR ratio is not an issue. Experiments using the four probe station were executed to understand the fundamental issues associated with the DDSV structures. Hard bias was also included in the experiment to mimic the real bias field in the read sensor. The selection of the permanent magnets was depended on the simulation results via MATLAB. The samples presented in the report are classified into two groups according to the thickness differences in the spacer and gap layers. In the first group of samples, the effect of the interlayer ferromagnetic coupling effect associated with the spacer layer can be explained using the Ruderman-Kittel-Kasuya-Yosida (RKKY) and orange peel effects. Anti-ferromagnetic coupling (AFC) can be observed in the next group of samples. There is a distinct trade-off between sensitivity as well as GMR ratio when a certain thickness of the gap/spacer layer is chosen. When sensitivity of the sample is low, it will result in a high GMR ratio and vice versa. Bachelor of Engineering (Materials Engineering) 2010-04-23T02:43:00Z 2010-04-23T02:43:00Z 2010 2010 Final Year Project (FYP) http://hdl.handle.net/10356/36160 en Nanyang Technological University 56 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Microelectronics and semiconductor materials
spellingShingle DRNTU::Engineering::Materials::Microelectronics and semiconductor materials
Liew, Li Ting.
Characterization of read sensors in hard disk drives
description One of the biggest challenges in a 10 Tb/in2 recording is the impossible reduction of the current sensor thickness to meet the linear resolution requirement, even with today’s technology. Current tunnel magnetoresistance (TMR) read head has reached its limit due to its high product of resistance and area (RA) and the shield to shield spacing (SSS) in current perpendicular-to-plane giant magnetoresistance (CPP-GMR) read head remains a bottle neck issue to achieve a high data recording. Therefore, differential dual spin valve (DDSV) is proposed to alleviate this problem, assuming that GMR ratio is not an issue. Experiments using the four probe station were executed to understand the fundamental issues associated with the DDSV structures. Hard bias was also included in the experiment to mimic the real bias field in the read sensor. The selection of the permanent magnets was depended on the simulation results via MATLAB. The samples presented in the report are classified into two groups according to the thickness differences in the spacer and gap layers. In the first group of samples, the effect of the interlayer ferromagnetic coupling effect associated with the spacer layer can be explained using the Ruderman-Kittel-Kasuya-Yosida (RKKY) and orange peel effects. Anti-ferromagnetic coupling (AFC) can be observed in the next group of samples. There is a distinct trade-off between sensitivity as well as GMR ratio when a certain thickness of the gap/spacer layer is chosen. When sensitivity of the sample is low, it will result in a high GMR ratio and vice versa.
author2 Gan Chee Lip
author_facet Gan Chee Lip
Liew, Li Ting.
format Final Year Project
author Liew, Li Ting.
author_sort Liew, Li Ting.
title Characterization of read sensors in hard disk drives
title_short Characterization of read sensors in hard disk drives
title_full Characterization of read sensors in hard disk drives
title_fullStr Characterization of read sensors in hard disk drives
title_full_unstemmed Characterization of read sensors in hard disk drives
title_sort characterization of read sensors in hard disk drives
publishDate 2010
url http://hdl.handle.net/10356/36160
_version_ 1759855291406483456