Position estimation of autonomous guided vehicle

This thesis presents the development and application of a sensor fusion algorithm in positioning. The theoretical background behind the algorithm is based on the extended Kalman filter. By merging information from different sensors such as the Differential Global Positioning System (DGPS), rate g...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Goh, Ching Tard.
مؤلفون آخرون: Wang, Han
التنسيق: Theses and Dissertations
منشور في: 2008
الموضوعات:
الوصول للمادة أونلاين:http://hdl.handle.net/10356/4296
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
الوصف
الملخص:This thesis presents the development and application of a sensor fusion algorithm in positioning. The theoretical background behind the algorithm is based on the extended Kalman filter. By merging information from different sensors such as the Differential Global Positioning System (DGPS), rate gyroscope and odometers, the filter is able to predict optimally the position and orientation of a 2-wheel steerable vehicle. In the filter, an enhanced kinematic process or vehicle model that accounts for the side slips experienced at the vehicle wheels is employed. These slip parameters that conform to the angles between the actual translated and pointed directions of the vehicle tires can affect the accuracy and consistency of the estimation system. Comparison between the enhanced model and another (without the slip consideration and based on pure kinematics) indicates improvements in the estimations as well as the orientation rate innovations with the slip compensation.