Design of band-gap reference for high temperature application
CMOS Band-gap reference circuits were designed in this project. Different approaches for the design are considered. In this project, the designs were simulated using 1.0 μm SOI-CMOS Technology from XFAB. XI10 from XFAB process is used. The sensitivity of thre...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/10356/50906 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | CMOS Band-gap reference circuits were designed in this project. Different approaches for the design are considered. In this project, the designs were simulated using 1.0 μm SOI-CMOS Technology from XFAB. XI10 from XFAB process is used. The sensitivity of threshold voltages and mobility of the MOSFET transistors had created challenging problems to achieve the good band-gap reference circuit.
A voltage reference circuits with a 5-V supply was successfully designed. The designed output voltage at 1.17 V achieved a temperature coefficient (TC) of 16.072 ppm/ᵒC. The reference voltage varies only 2 mV over 300ᵒC. The amplifier and bias generator were designed to meet the requirements of the band-gap reference circuits in order to perform well over a wide range of temperature.
Two types of operational amplifiers, folded cascade amplifier and two-stage amplier, were designed for the circuit. Their advantages and disadvantages are discussed in the report. Other different approaches for the better performance of the band-gap reference circuits such as cascade current mirror and using gain enhanced mirror were considered. |
---|