Low power data-driven dynamic logic circuits

Dynamic Logic is used in high performance circuit designs for its high speed and less transistor needed to implement a same function compared to Static Logic. Data-Driven Dynamic Logic utilizes input data to replace clock signal as control of pre-charge and evaluation phase. By elimination...

Full description

Saved in:
Bibliographic Details
Main Author: Zhang, Han
Other Authors: Lau Kim Teen
Format: Theses and Dissertations
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/10356/64960
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Dynamic Logic is used in high performance circuit designs for its high speed and less transistor needed to implement a same function compared to Static Logic. Data-Driven Dynamic Logic utilizes input data to replace clock signal as control of pre-charge and evaluation phase. By elimination the clock, less power consumption can be obtained without speed degradation. In this project, Data-Driven Dynamic Logic is undertaken to design CMOS circuits concentrating on power and speed performance. Full Adders are designed with D3L technique and Domino, NP-CMOS circuit techniques to compare the performance trade-offs. 4-bit Ripper Carry Adder, 4-bit Kogge-Stone Adder and 16-bit Kogge-Stone adder are also implemented and simulated using Cadence Virtuoso software. The results show that Data-Driven Dynamic Logic circuits are able to work under low supply voltage. For simple basic logic, D3L logic may save power at the cost of longer pre-charge time. When Data-Driven Driven Dynamic Logic is applied to 16-bit Kogge-Stone Adder, the advantage becomes evident that it is 13% faster and the power consumption is 15% lower.