Effect of UV exposure on indium oxide thin film transistors

Amorphous oxide semiconductors are of research interests recently as it has the ability to be adapted into various manufacturing methods, and produced at a lower cost as compared to conventional silicon semiconductors. Solution process deposition method is one of the methods to produce amorphous oxi...

Full description

Saved in:
Bibliographic Details
Main Author: Kok, Lendl Yi Zhi
Other Authors: Nripan Mathews
Format: Final Year Project
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/10356/66760
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-66760
record_format dspace
spelling sg-ntu-dr.10356-667602023-03-04T15:36:39Z Effect of UV exposure on indium oxide thin film transistors Kok, Lendl Yi Zhi Nripan Mathews School of Materials Science and Engineering DRNTU::Engineering::Materials::Microelectronics and semiconductor materials::Thin films Amorphous oxide semiconductors are of research interests recently as it has the ability to be adapted into various manufacturing methods, and produced at a lower cost as compared to conventional silicon semiconductors. Solution process deposition method is one of the methods to produce amorphous oxide semiconductors. Solution process is favoured over vacuum deposition techniques as it deposits thin films at a lower temperature and it allows the deposition on flexible substrates, forming flexible electronics. However one major hurdle is that all processes need to undergo a post-deposition thermal annealing in order to drive condensation and densification of oxide layers. This thermal annealing step often takes place at 250C or higher temperatures, and this hinders the ability to use flexible substrates such as PET and other polymers with low glass transition temperatures. Hence, there is a need to look into alternative post deposition methods that can take place at a much lower temperature to enable the use of flexible substrates. One of these alternative methods is UV exposure and the main purpose of this study is to look into the effects of UV exposure on indium oxide thin film transistors and compare them to the conventional thermal annealing method. Various electrical parameters of the indium oxide thin film transistors are mainly studied such as the saturation mobility, sub-threshold swing, threshold voltage, and On/Off ratio. Devices made were also studied with various characterization techniques such as optical absorption spectroscopy, Fourier Transform Infrared spectroscopy, X-ray diffraction, Atomic Force Microscopy, and X-ray Photoelectron Spectroscopy. The results show that UV exposed devices showed a peak saturation mobility of 34.44 cm^2/Vs while thermal annealed samples only showed 1.21 cm^2/Vs. This significant higher saturation mobility translates into higher device performance as compared to thermally annealed devices. However there is also a drawback for UV exposed devices as they exhibited poorer sub-threshold swing of 0.93 V/dec while thermal annealed samples showed 0.58 V/dec. With the use of FTIR spectroscopy, it was found that UV exposure also removes more impurities from the oxide layer. With the aid of XPS, this was further verified and the reduction of impurities led to the formation of better In-O-In layer, explaining the phenomenon of increased mobility. On the other hand, the high penetration power also damages the semiconductor-dielectric interface which results in the increase in sub-threshold swing. The drawbacks of UV exposure are minimal compared to the significant increase in saturation mobility therefore it demonstrates that UV exposure has great potential in replacing thermal annealing as the low temperature post deposition treatment technique. Bachelor of Engineering (Materials Engineering) 2016-04-26T00:46:01Z 2016-04-26T00:46:01Z 2016 Final Year Project (FYP) http://hdl.handle.net/10356/66760 en Nanyang Technological University 49 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Materials::Microelectronics and semiconductor materials::Thin films
spellingShingle DRNTU::Engineering::Materials::Microelectronics and semiconductor materials::Thin films
Kok, Lendl Yi Zhi
Effect of UV exposure on indium oxide thin film transistors
description Amorphous oxide semiconductors are of research interests recently as it has the ability to be adapted into various manufacturing methods, and produced at a lower cost as compared to conventional silicon semiconductors. Solution process deposition method is one of the methods to produce amorphous oxide semiconductors. Solution process is favoured over vacuum deposition techniques as it deposits thin films at a lower temperature and it allows the deposition on flexible substrates, forming flexible electronics. However one major hurdle is that all processes need to undergo a post-deposition thermal annealing in order to drive condensation and densification of oxide layers. This thermal annealing step often takes place at 250C or higher temperatures, and this hinders the ability to use flexible substrates such as PET and other polymers with low glass transition temperatures. Hence, there is a need to look into alternative post deposition methods that can take place at a much lower temperature to enable the use of flexible substrates. One of these alternative methods is UV exposure and the main purpose of this study is to look into the effects of UV exposure on indium oxide thin film transistors and compare them to the conventional thermal annealing method. Various electrical parameters of the indium oxide thin film transistors are mainly studied such as the saturation mobility, sub-threshold swing, threshold voltage, and On/Off ratio. Devices made were also studied with various characterization techniques such as optical absorption spectroscopy, Fourier Transform Infrared spectroscopy, X-ray diffraction, Atomic Force Microscopy, and X-ray Photoelectron Spectroscopy. The results show that UV exposed devices showed a peak saturation mobility of 34.44 cm^2/Vs while thermal annealed samples only showed 1.21 cm^2/Vs. This significant higher saturation mobility translates into higher device performance as compared to thermally annealed devices. However there is also a drawback for UV exposed devices as they exhibited poorer sub-threshold swing of 0.93 V/dec while thermal annealed samples showed 0.58 V/dec. With the use of FTIR spectroscopy, it was found that UV exposure also removes more impurities from the oxide layer. With the aid of XPS, this was further verified and the reduction of impurities led to the formation of better In-O-In layer, explaining the phenomenon of increased mobility. On the other hand, the high penetration power also damages the semiconductor-dielectric interface which results in the increase in sub-threshold swing. The drawbacks of UV exposure are minimal compared to the significant increase in saturation mobility therefore it demonstrates that UV exposure has great potential in replacing thermal annealing as the low temperature post deposition treatment technique.
author2 Nripan Mathews
author_facet Nripan Mathews
Kok, Lendl Yi Zhi
format Final Year Project
author Kok, Lendl Yi Zhi
author_sort Kok, Lendl Yi Zhi
title Effect of UV exposure on indium oxide thin film transistors
title_short Effect of UV exposure on indium oxide thin film transistors
title_full Effect of UV exposure on indium oxide thin film transistors
title_fullStr Effect of UV exposure on indium oxide thin film transistors
title_full_unstemmed Effect of UV exposure on indium oxide thin film transistors
title_sort effect of uv exposure on indium oxide thin film transistors
publishDate 2016
url http://hdl.handle.net/10356/66760
_version_ 1759853797621891072