Instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks

In recent years, robots have been successfully applied to automate repetitive, structured and non-contact tasks such as painting and welding. However, when it comes to contact tasks such as fine finishing tasks, these still cannot be performed by robots and often require the intervention of skilled...

Full description

Saved in:
Bibliographic Details
Main Author: Phan, GIa Hoang
Other Authors: Choo Kok Fah
Format: Theses and Dissertations
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/70591
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-70591
record_format dspace
spelling sg-ntu-dr.10356-705912023-03-11T18:05:58Z Instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks Phan, GIa Hoang Choo Kok Fah School of Mechanical and Aerospace Engineering Robotics Research Centre Domenico Campolo DRNTU::Engineering::Mechanical engineering::Robots In recent years, robots have been successfully applied to automate repetitive, structured and non-contact tasks such as painting and welding. However, when it comes to contact tasks such as fine finishing tasks, these still cannot be performed by robots and often require the intervention of skilled human operators. Control strategies currently adopted for industrial robots are based on position/force control and do not clearly capture the skills developed by experienced human operators. The main objective of this work is to develop tools and algorithms that capture human motor skills for the purpose of transfer to industrial robots. Human motor skills are here broadly intended as the coordination of multiple and redundant degrees of freedom (e.g. due to the kinematics of the human arm) and the regulation of forces and torques as well as the regulation of mechanical impedance (e.g. stiffness of the human arm). This study uses available kinematic/dynamic information and applies stiffness estimation methods to infer the (neuro-)mechanical impedance of the human arm/wrist during motion, in particular during an industrial tooling task. This approach to stiffness estimation is validated on an impedance-controlled robot. The stiffness values estimated for human subjects, at different force levels, correlated positively with the muscular activity. The novelty of our method is that the perturbations originate from the stochastic nature of the task itself rather than from a dedicated, external system as in all previous works. Doctor of Philosophy (MAE) 2017-05-04T07:54:16Z 2017-05-04T07:54:16Z 2017 Thesis Phan, G. H. (2017). Instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks. Doctoral thesis, Nanyang Technological University, Singapore. http://hdl.handle.net/10356/70591 10.32657/10356/70591 en 111 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering::Robots
spellingShingle DRNTU::Engineering::Mechanical engineering::Robots
Phan, GIa Hoang
Instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks
description In recent years, robots have been successfully applied to automate repetitive, structured and non-contact tasks such as painting and welding. However, when it comes to contact tasks such as fine finishing tasks, these still cannot be performed by robots and often require the intervention of skilled human operators. Control strategies currently adopted for industrial robots are based on position/force control and do not clearly capture the skills developed by experienced human operators. The main objective of this work is to develop tools and algorithms that capture human motor skills for the purpose of transfer to industrial robots. Human motor skills are here broadly intended as the coordination of multiple and redundant degrees of freedom (e.g. due to the kinematics of the human arm) and the regulation of forces and torques as well as the regulation of mechanical impedance (e.g. stiffness of the human arm). This study uses available kinematic/dynamic information and applies stiffness estimation methods to infer the (neuro-)mechanical impedance of the human arm/wrist during motion, in particular during an industrial tooling task. This approach to stiffness estimation is validated on an impedance-controlled robot. The stiffness values estimated for human subjects, at different force levels, correlated positively with the muscular activity. The novelty of our method is that the perturbations originate from the stochastic nature of the task itself rather than from a dedicated, external system as in all previous works.
author2 Choo Kok Fah
author_facet Choo Kok Fah
Phan, GIa Hoang
format Theses and Dissertations
author Phan, GIa Hoang
author_sort Phan, GIa Hoang
title Instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks
title_short Instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks
title_full Instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks
title_fullStr Instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks
title_full_unstemmed Instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks
title_sort instrumented tools and algorithms for estimation of human joint mechanical impedance during tooling tasks
publishDate 2017
url http://hdl.handle.net/10356/70591
_version_ 1761781899869552640