Wall climbing robot for indoor application

Mobile robotic systems are very popular and have been widely used by many different industries in the recent years. They are mainly the unmanned aerial vehicle (sometimes known as a drone), autonomous ground vehicle (AGV), and remotely operated underwater vehicle (ROV). All these systems have one th...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Ri Liang
Other Authors: Li King Ho Holden
Format: Final Year Project
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/10356/71443
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-71443
record_format dspace
spelling sg-ntu-dr.10356-714432023-03-04T18:23:31Z Wall climbing robot for indoor application Tan, Ri Liang Li King Ho Holden School of Mechanical and Aerospace Engineering Temasek Laboratories DRNTU::Engineering::Mechanical engineering Mobile robotic systems are very popular and have been widely used by many different industries in the recent years. They are mainly the unmanned aerial vehicle (sometimes known as a drone), autonomous ground vehicle (AGV), and remotely operated underwater vehicle (ROV). All these systems have one thing in common, which is a lack of the ability to climb/move on wall surfaces. In many military operations, small devices such as temperature sensor and mini camera are temporarily installed onto the high wall of buildings. This increase the risk of a soldier that climb up the high-rise wall. Hence, a wall climbing robot that designed to climb up and move on the wall surface will have the advantage for such application. Development of a wall climbing robot is highly challenging as it seeks an approach to disobey the nature’s law of gravity. Many research has been conducted on the wall climbing robot system over the past few decades. However, not many wall climbing system is being employed by the industry or commercialised to the current market. Therefore, this project focuses on the design and development of a wall climbing robot for an indoor application of which is to deploy a device onto the wall surface. The project covers the conceptual designs, material and components selection, and experiment testing of the wall climbing robot and the device deployment mechanism. The detail descriptions of all designs and working principles are presented. The observations and results obtained from the running tests are also discussed in the report. The robot system developed from this project uses a four-wheels drive system for motion and an aerodynamic mechanism for adhesion. The robot can climb on a vertical painted brick wall and make the transition between horizontal ground floor and vertical wall. Besides that, the robot system has a gripper deployment mechanism that used to carry and deploy object. The overall size of the robot is 160 ×185 ×160 mm and weight 780.3 grams. Bachelor of Engineering (Mechanical Engineering) 2017-05-16T09:42:49Z 2017-05-16T09:42:49Z 2017 Final Year Project (FYP) http://hdl.handle.net/10356/71443 en Nanyang Technological University 82 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Mechanical engineering
spellingShingle DRNTU::Engineering::Mechanical engineering
Tan, Ri Liang
Wall climbing robot for indoor application
description Mobile robotic systems are very popular and have been widely used by many different industries in the recent years. They are mainly the unmanned aerial vehicle (sometimes known as a drone), autonomous ground vehicle (AGV), and remotely operated underwater vehicle (ROV). All these systems have one thing in common, which is a lack of the ability to climb/move on wall surfaces. In many military operations, small devices such as temperature sensor and mini camera are temporarily installed onto the high wall of buildings. This increase the risk of a soldier that climb up the high-rise wall. Hence, a wall climbing robot that designed to climb up and move on the wall surface will have the advantage for such application. Development of a wall climbing robot is highly challenging as it seeks an approach to disobey the nature’s law of gravity. Many research has been conducted on the wall climbing robot system over the past few decades. However, not many wall climbing system is being employed by the industry or commercialised to the current market. Therefore, this project focuses on the design and development of a wall climbing robot for an indoor application of which is to deploy a device onto the wall surface. The project covers the conceptual designs, material and components selection, and experiment testing of the wall climbing robot and the device deployment mechanism. The detail descriptions of all designs and working principles are presented. The observations and results obtained from the running tests are also discussed in the report. The robot system developed from this project uses a four-wheels drive system for motion and an aerodynamic mechanism for adhesion. The robot can climb on a vertical painted brick wall and make the transition between horizontal ground floor and vertical wall. Besides that, the robot system has a gripper deployment mechanism that used to carry and deploy object. The overall size of the robot is 160 ×185 ×160 mm and weight 780.3 grams.
author2 Li King Ho Holden
author_facet Li King Ho Holden
Tan, Ri Liang
format Final Year Project
author Tan, Ri Liang
author_sort Tan, Ri Liang
title Wall climbing robot for indoor application
title_short Wall climbing robot for indoor application
title_full Wall climbing robot for indoor application
title_fullStr Wall climbing robot for indoor application
title_full_unstemmed Wall climbing robot for indoor application
title_sort wall climbing robot for indoor application
publishDate 2017
url http://hdl.handle.net/10356/71443
_version_ 1759854107443593216