Automated DFT verification and pattern generation methodology for mixed signal SoC

Design for Test (DFT) is a complex and critical activity in modern SoC design cycle. A typical SoC has multiple IPs with different test requirements. The verification of these test schemes is usually addressed ad-hoc in a project which leads to missing test cases and delay in project schedules. More...

Full description

Saved in:
Bibliographic Details
Main Author: Bellam Venkata Sai Kiran
Other Authors: Gwee Bah Hwee
Format: Theses and Dissertations
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10356/73118
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-73118
record_format dspace
spelling sg-ntu-dr.10356-731182023-07-04T15:47:41Z Automated DFT verification and pattern generation methodology for mixed signal SoC Bellam Venkata Sai Kiran Gwee Bah Hwee School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Design for Test (DFT) is a complex and critical activity in modern SoC design cycle. A typical SoC has multiple IPs with different test requirements. The verification of these test schemes is usually addressed ad-hoc in a project which leads to missing test cases and delay in project schedules. Moreover, the need to support the test teams by providing patterns required for silicon tests puts additional requirements on the verification process. Test cases developed to simulate functional tests should be cyclised and converted to patternsrequiring cumbersome pattern conversion flow. Test patterns generated from EDA tool for structural tests should be simulated and verified to match simulated data with tester data. This dissertation aims to develop a comprehensive verification environment using Universal Verification Methodology (UVM) to support all verification activities involved in DFT for mixed signal SoC. The concept of transaction level modelling (TLM) has been exploited to record the transactions and automatically generate test patterns from the simulation of test cases thus avoiding additional pattern conversion flow. A Verilog Procedural Interface (VPI) based approach has been developed and integrated into this environment to directly run simulations from test patterns reducing the debug time involved. A configurable and reusable verification environment with UVM classes populated with methods to verify widely used test schemes has been developed to achieve over 99% code coverage for test logic. Single simulation snapshot sharing scheme has been developed for all simulations to reduce the overall simulation time by 25%. This methodology provides a means to directly read test pattern formats like Standard Test Interface Language (STIL) and Serial Vector Format (SVF) in a simulation environment avoiding the need for pattern conversion software. A general purpose pattern writing flow which can be configured for writing out patterns in above formats directly from the simulation environment has been developed and successfully ported to ATE environment for running silicon production tests. Master of Science (Integrated Circuit Design) 2018-01-03T06:37:19Z 2018-01-03T06:37:19Z 2018 Thesis http://hdl.handle.net/10356/73118 en 111 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Bellam Venkata Sai Kiran
Automated DFT verification and pattern generation methodology for mixed signal SoC
description Design for Test (DFT) is a complex and critical activity in modern SoC design cycle. A typical SoC has multiple IPs with different test requirements. The verification of these test schemes is usually addressed ad-hoc in a project which leads to missing test cases and delay in project schedules. Moreover, the need to support the test teams by providing patterns required for silicon tests puts additional requirements on the verification process. Test cases developed to simulate functional tests should be cyclised and converted to patternsrequiring cumbersome pattern conversion flow. Test patterns generated from EDA tool for structural tests should be simulated and verified to match simulated data with tester data. This dissertation aims to develop a comprehensive verification environment using Universal Verification Methodology (UVM) to support all verification activities involved in DFT for mixed signal SoC. The concept of transaction level modelling (TLM) has been exploited to record the transactions and automatically generate test patterns from the simulation of test cases thus avoiding additional pattern conversion flow. A Verilog Procedural Interface (VPI) based approach has been developed and integrated into this environment to directly run simulations from test patterns reducing the debug time involved. A configurable and reusable verification environment with UVM classes populated with methods to verify widely used test schemes has been developed to achieve over 99% code coverage for test logic. Single simulation snapshot sharing scheme has been developed for all simulations to reduce the overall simulation time by 25%. This methodology provides a means to directly read test pattern formats like Standard Test Interface Language (STIL) and Serial Vector Format (SVF) in a simulation environment avoiding the need for pattern conversion software. A general purpose pattern writing flow which can be configured for writing out patterns in above formats directly from the simulation environment has been developed and successfully ported to ATE environment for running silicon production tests.
author2 Gwee Bah Hwee
author_facet Gwee Bah Hwee
Bellam Venkata Sai Kiran
format Theses and Dissertations
author Bellam Venkata Sai Kiran
author_sort Bellam Venkata Sai Kiran
title Automated DFT verification and pattern generation methodology for mixed signal SoC
title_short Automated DFT verification and pattern generation methodology for mixed signal SoC
title_full Automated DFT verification and pattern generation methodology for mixed signal SoC
title_fullStr Automated DFT verification and pattern generation methodology for mixed signal SoC
title_full_unstemmed Automated DFT verification and pattern generation methodology for mixed signal SoC
title_sort automated dft verification and pattern generation methodology for mixed signal soc
publishDate 2018
url http://hdl.handle.net/10356/73118
_version_ 1772825159561904128