High-level synthesis algorithm for the design of reconfigurable constant multiplier

Multiplying a signal by a known constant is an essential operation in digital signal processing algorithms. In many application scenarios, an input or output signal is repeat...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Jiajia, Chang, Chip Hong
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2010
Subjects:
Online Access:https://hdl.handle.net/10356/80022
http://hdl.handle.net/10220/6230
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-80022
record_format dspace
spelling sg-ntu-dr.10356-800222020-03-07T13:57:23Z High-level synthesis algorithm for the design of reconfigurable constant multiplier Chen, Jiajia Chang, Chip Hong School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Multiplying a signal by a known constant is an essential operation in digital signal processing algorithms. In many application scenarios, an input or output signal is repeatedly multiplied by several predefined constants at different instances. These temporal redundancies can be exploited for the design of an efficient reconfigurable constant multiplier (RCM). An RCM achieves greater hardware savings than the conventional multiple constant multiplication architecture, limited only by the available latency of the subsystem. Motivated by a number of lucrative examples, this paper presents a new high-level design methodology for RCM. Common subexpressions in the preset constants represented in minimum signed-digit system are first eliminated to obtain a minimum depth multiroot directed acyclic graph (DAG). The DAG is converted into a primitive data flow graph (DFG) where mobile adders are identified. By scheduling each mobile adder into a control step within its legitimate time window with the minimum opportunity cost, mutually exclusive adders can be merged with significantly reduced adder and multiplexing cost. The opportunity cost for each scheduling decision is assessed by the probability displacement and disparity measures of the scheduled node as well as its predecessors and successors in the DFG. The algorithm is runtime efficient as exhaustive search for the best fusion of independently optimized constant multipliers has been avoided. Simulation results on randomly generated 12-b constant sets show that the solutions generated by the proposed algorithm are on average 19% to 25% more area–time efficient than the best reported solutions. Published version 2010-04-14T03:57:51Z 2019-12-06T13:38:53Z 2010-04-14T03:57:51Z 2019-12-06T13:38:53Z 2009 2009 Journal Article Chen, J., & Chang, C. H. (2009). High-level synthesis algorithm for the design of reconfigurable constant multiplier. IEEE Transactions On Computer-Aided Design Of Integrated Circuits And Systems, 28(12), 1844-1856. 0278-0070 https://hdl.handle.net/10356/80022 http://hdl.handle.net/10220/6230 10.1109/TCAD.2009.2030446 en IEEE transactions on computer-aided design of integrated circuits and systems © 2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. 13 p. application/pdf
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Engineering::Electrical and electronic engineering
spellingShingle DRNTU::Engineering::Electrical and electronic engineering
Chen, Jiajia
Chang, Chip Hong
High-level synthesis algorithm for the design of reconfigurable constant multiplier
description Multiplying a signal by a known constant is an essential operation in digital signal processing algorithms. In many application scenarios, an input or output signal is repeatedly multiplied by several predefined constants at different instances. These temporal redundancies can be exploited for the design of an efficient reconfigurable constant multiplier (RCM). An RCM achieves greater hardware savings than the conventional multiple constant multiplication architecture, limited only by the available latency of the subsystem. Motivated by a number of lucrative examples, this paper presents a new high-level design methodology for RCM. Common subexpressions in the preset constants represented in minimum signed-digit system are first eliminated to obtain a minimum depth multiroot directed acyclic graph (DAG). The DAG is converted into a primitive data flow graph (DFG) where mobile adders are identified. By scheduling each mobile adder into a control step within its legitimate time window with the minimum opportunity cost, mutually exclusive adders can be merged with significantly reduced adder and multiplexing cost. The opportunity cost for each scheduling decision is assessed by the probability displacement and disparity measures of the scheduled node as well as its predecessors and successors in the DFG. The algorithm is runtime efficient as exhaustive search for the best fusion of independently optimized constant multipliers has been avoided. Simulation results on randomly generated 12-b constant sets show that the solutions generated by the proposed algorithm are on average 19% to 25% more area–time efficient than the best reported solutions.
author2 School of Electrical and Electronic Engineering
author_facet School of Electrical and Electronic Engineering
Chen, Jiajia
Chang, Chip Hong
format Article
author Chen, Jiajia
Chang, Chip Hong
author_sort Chen, Jiajia
title High-level synthesis algorithm for the design of reconfigurable constant multiplier
title_short High-level synthesis algorithm for the design of reconfigurable constant multiplier
title_full High-level synthesis algorithm for the design of reconfigurable constant multiplier
title_fullStr High-level synthesis algorithm for the design of reconfigurable constant multiplier
title_full_unstemmed High-level synthesis algorithm for the design of reconfigurable constant multiplier
title_sort high-level synthesis algorithm for the design of reconfigurable constant multiplier
publishDate 2010
url https://hdl.handle.net/10356/80022
http://hdl.handle.net/10220/6230
_version_ 1681042300692594688