An Online Unsupervised Structural Plasticity Algorithm for Spiking Neural Networks
In this paper, we propose a novel winner-take-all (WTA) architecture employing neurons with nonlinear dendrites and an online unsupervised structural plasticity rule for training it. Furthermore, to aid hardware implementations, our network employs only binary synapses. The proposed learning rule is...
Saved in:
Main Authors: | Roy, Subhrajit, Basu, Arindam |
---|---|
其他作者: | School of Electrical and Electronic Engineering |
格式: | Article |
語言: | English |
出版: |
2016
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/80901 http://hdl.handle.net/10220/41059 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Design and Study of an Artificial Spiking Neuron Enabled by Low-Voltage SiOx-based ReRAM
由: NIU XUHUA, et al.
出版: (2021) -
Design of Artificial Spiking Neuron with SiO2 Memristive Synapse to Demonstrate Neuron-Level Spike Timing Dependent Plasticity
由: NIU XUHUA, et al.
出版: (2021) -
An Efficient and Perceptually Motivated Auditory Neural Encoding and Decoding Algorithm for Spiking Neural Networks
由: Pan, Z., et al.
出版: (2021) -
On the Non-STDP Behavior and Its Remedy in a Floating-Gate Synapse
由: Gopalakrishnan, Roshan, et al.
出版: (2016) -
The optimal multi-stage contest
由: Fu, Q., et al.
出版: (2013)