Lamellar sheet exfoliation of single lipid vesicles by a membrane-active peptide
Using total internal fluorescence microscopy, highly parallel measurements of single lipid vesicles unexpectedly reveal that a small fraction of vesicles rupture in multiple discrete steps when destabilized by a membrane-active peptide which is in contrast to classical solubilization models. To acco...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/80927 http://hdl.handle.net/10220/40633 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Using total internal fluorescence microscopy, highly parallel measurements of single lipid vesicles unexpectedly reveal that a small fraction of vesicles rupture in multiple discrete steps when destabilized by a membrane-active peptide which is in contrast to classical solubilization models. To account for this surprizing kinetic behaviour, we identified that this vesicle subpopulation consists of multilamellar vesicles, and that the outermost lamella is more susceptible to rupture than unilamellar vesicles of even smaller size. This finding sheds light on the multiple ways in which membrane configuration can influence strain in the bilayer leaflet and contribute to nm-scale membrane curvature sensing. |
---|