Neurofilament light as a blood biomarker for neurodegeneration in down syndrome
Background Down syndrome (DS) may be considered a genetic form of Alzheimer’s disease (AD) due to universal development of AD neuropathology, but diagnosis and treatment trials are hampered by a lack of reliable blood biomarkers. A potential biomarker is neurofilament light (NF-L), due to its ass...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81011 http://hdl.handle.net/10220/45065 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Background
Down syndrome (DS) may be considered a genetic form of Alzheimer’s disease (AD) due to universal development of AD neuropathology, but diagnosis and treatment trials are hampered by a lack of reliable blood biomarkers. A potential biomarker is neurofilament light (NF-L), due to its association with axonal damage in neurodegenerative conditions.
Methods
We measured blood NF-L concentrations in 100 adults with DS using Simoa NF-light® assays, and we examined relationships with age as well as cross-sectional and longitudinal dementia diagnosis.
Results
NF-L concentrations increased with age (Spearman’s rho = 0.789, p < 0.001), with a steep increase after age 40, and they were predictive of dementia status (p = 0.022 adjusting for age, sex, and APOE4), but they showed no relationship with long-standing epilepsy or premorbid ability. Baseline NF-L concentrations were associated with longitudinal dementia status.
Conclusions
NF-L is a biomarker for neurodegeneration in DS with potential for use in future clinical trials to prevent or delay dementia. |
---|