MOCVD Growth and Fabrication of High Power MUTC Photodiodes Using InGaAs-InP System
We report charge-compensated modified uni-traveling-carrier photodiodes (MUTC-PDs) with high photocurrent and fast response, grown using liquid group-V precursor, in an AIXTRON MOCVD system. The liquid group-V precursors involve less toxicity with better decomposition characteristics. Device fabrica...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81535 http://hdl.handle.net/10220/39575 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We report charge-compensated modified uni-traveling-carrier photodiodes (MUTC-PDs) with high photocurrent and fast response, grown using liquid group-V precursor, in an AIXTRON MOCVD system. The liquid group-V precursors involve less toxicity with better decomposition characteristics. Device fabrication is completed with standard processing techniques with BCB passivation. DC and RF measurements are carried out using a single mode fiber at 1.55 μm. For a 24-μm-diameter device (with diode ideality factor of 1.34), the dark current is 32.5 nA and the 3-dB bandwidth is ≫20 GHz at a reverse bias of 5 V, which are comparable to the theoretical values. High photocurrent of over 150.0 mA from larger diameter (>60 μm) devices is obtained. The maximum DC responsivity at 1.55 μm wavelength is O.51 A/W without antireflection coating. These photodiodes play a key role in the progress of the future THz communication systems. |
---|