On the Non-STDP Behavior and Its Remedy in a Floating-Gate Synapse
This brief describes the neuromorphic very large scale integration implementation of a synapse utilizing a single floating-gate (FG) transistor that can be used to store a weight in a nonvolatile manner and demonstrate biological learning rules such as spike-timing-dependent plasticity (STDP). The e...
Saved in:
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/81587 http://hdl.handle.net/10220/39555 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | This brief describes the neuromorphic very large scale integration implementation of a synapse utilizing a single floating-gate (FG) transistor that can be used to store a weight in a nonvolatile manner and demonstrate biological learning rules such as spike-timing-dependent plasticity (STDP). The experimental STDP plot (change in weight against △t = tpost - tpre) of a traditional FG synapse from previous studies shows a depression instead of potentiation at some range of positive values of △t-we call this non-STDP behavior. In this brief, we first analyze theoretically the reason for this anomaly and then present a simple solution based on changing control gate waveforms of the FG device to make the weight change conform closely to biological observations over a wide range of parameters. The experimental results from an FG synapse fabricated in AMS 0.35-μm CMOS process design are also presented to justify the claim. Finally, we present the simulation results of a circuit designed to create the modified gate voltage waveform. |
---|