3D convolutional neural networks for efficient and robust hand pose estimation from single depth images
We propose a simple, yet effective approach for real-time hand pose estimation from single depth images using three-dimensional Convolutional Neural Networks (3D CNNs). Image based features extracted by 2D CNNs are not directly suitable for 3D hand pose estimation due to the lack of 3D spatial infor...
Saved in:
Main Authors: | Ge, Liuhao, Liang, Hui, Yuan, Junsong, Thalmann, Daniel |
---|---|
其他作者: | Interdisciplinary Graduate School (IGS) |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/82836 http://hdl.handle.net/10220/50409 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
Robust 3D hand pose estimation from single depth images using multi-view CNNs
由: Ge, Liuhao, et al.
出版: (2020) -
Real-time 3D hand pose estimation with 3D convolutional neural networks
由: Ge, Liuhao, et al.
出版: (2019) -
Hough forest with optimized leaves for global hand pose estimation with arbitrary postures
由: Liang, Hui, et al.
出版: (2020) -
Performance Evaluation of Markerless 3D Skeleton Pose Estimates with Pop Dance Motion Sequence
由: Labuguen, Rollyn T, et al.
出版: (2020) -
Hand PointNet : 3D hand pose estimation using point sets
由: Ge, Liuhao, et al.
出版: (2018)