Completeness of randomized kinodynamic planners with state-based steering
The panorama of probabilistic completeness results for kinodynamic planners is still confusing. Most existing completeness proofs require strong assumptions that are difficult, if not impossible, to verify in practice. To make completeness results more useful, it is thus sensible to establish a clas...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/83223 http://hdl.handle.net/10220/42491 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The panorama of probabilistic completeness results for kinodynamic planners is still confusing. Most existing completeness proofs require strong assumptions that are difficult, if not impossible, to verify in practice. To make completeness results more useful, it is thus sensible to establish a classification of the various types of constraints and planning methods, and then attack each class with specific proofs and hypotheses that can be verified in practice. We propose such a classification, and provide a proof of probabilistic completeness for an important class of planners, namely those whose steering method is based on the interpolation of system trajectories in the state space. We also provide design guidelines for the interpolation function and discuss two criteria arising from our analysis: local boundedness and acceleration compliance. |
---|