Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects
Chromosomal instability (CIN), a higher propensity for loss or gain of whole chromosomes, is a hallmark of cancer and is associated with poor prognosis and drug resistance in multiple types of cancers. CIN often generates aneuploid, including polyploid, cells which contain abnormal number of chromos...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/83258 http://hdl.handle.net/10220/48003 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-83258 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-832582023-02-28T18:39:01Z Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects He, Qianqian Karen Crasta School of Biological Sciences DRNTU::Science::Biological sciences Chromosomal instability (CIN), a higher propensity for loss or gain of whole chromosomes, is a hallmark of cancer and is associated with poor prognosis and drug resistance in multiple types of cancers. CIN often generates aneuploid, including polyploid, cells which contain abnormal number of chromosomes. Despite the prevalence of aneuploidy in tumours, the cell fates following different degrees of chromosome mis-segregation and aneuploidy and how aneuploidy contributes to tumourigenesis remain unclear. Here in this study, we generated relatively mild and severe forms of random aneuploidy in chromosomally stable cells using nocodazole (a microtubule depolymerisation drug) and reversine (spindle assembly checkpoint (SAC) kinase Mps1 inhibitor). We found that severe forms of aneuploid, including polyploid cells, led to senescence, which is classically defined as an irreversible cell cycle arrest. Conversely, mild forms of aneuploidy continued proliferation. Additionally, aneuploidy induced by genetic intervention mechanisms through knockdown of SAC component BUB1 and cohesion subunit SMC1A also culminated in senescence, further substantiating the notion that aneuploidy is sufficient to trigger senescence. These senescent cells were observed to exhibit persistent DNA damage and robust p53 activation. We further found that depletion of p53 significantly reduced the number of senescent cells with concomitant increase in cells undergoing DNA synthesis, suggesting the senescence growth arrest is p53-dependent. Importantly, further characterisation revealed that these aneuploidy-induced senescent cells acquired the senescence-associated secretory phenotype (SASP) which is characterised by increased secretion of a variety of pro-inflammatory factors including cytokines, chemokines, growth factors and matrix remodelling factors and so on. Subsequent phenotypic analysis demonstrated that these SASP factors conferred paracrine pro-tumourigenic effects such as cell migration, invasion and angiogenesis both in vitro and in vivo. Finally, we observed a correlation between high levels of aneuploidy and senescence at the invasive front in invasive ductal breast carcinomas. Collectively, our findings demonstrate functional non-equivalence of discernable random aneuploidies on tumourigenesis and suggest a cell non-autonomous mechanism by which aneuploidy-induced senescence and SASP can affect the tumour microenvironment to promote tumour progression. Doctor of Philosophy 2019-04-10T07:05:52Z 2019-12-06T15:18:35Z 2019-04-10T07:05:52Z 2019-12-06T15:18:35Z 2019 Thesis He, Q. (2019). Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/83258 http://hdl.handle.net/10220/48003 10.32657/10220/48003 en 161 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Biological sciences |
spellingShingle |
DRNTU::Science::Biological sciences He, Qianqian Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects |
description |
Chromosomal instability (CIN), a higher propensity for loss or gain of whole chromosomes, is a hallmark of cancer and is associated with poor prognosis and drug resistance in multiple types of cancers. CIN often generates aneuploid, including polyploid, cells which contain abnormal number of chromosomes. Despite the prevalence of aneuploidy in tumours, the cell fates following different degrees of chromosome mis-segregation and aneuploidy and how aneuploidy contributes to tumourigenesis remain unclear. Here in this study, we generated relatively mild and severe forms of random aneuploidy in chromosomally stable cells using nocodazole (a microtubule depolymerisation drug) and reversine (spindle assembly checkpoint (SAC) kinase Mps1 inhibitor). We found that severe forms of aneuploid, including polyploid cells, led to senescence, which is classically defined as an irreversible cell cycle arrest. Conversely, mild forms of aneuploidy continued proliferation. Additionally, aneuploidy induced by genetic intervention mechanisms through knockdown of SAC component BUB1 and cohesion subunit SMC1A also culminated in senescence, further substantiating the notion that aneuploidy is sufficient to trigger senescence. These senescent cells were observed to exhibit persistent DNA damage and robust p53 activation. We further found that depletion of p53 significantly reduced the number of senescent cells with concomitant increase in cells undergoing DNA synthesis, suggesting the senescence growth arrest is p53-dependent. Importantly, further characterisation revealed that these aneuploidy-induced senescent cells acquired the senescence-associated secretory phenotype (SASP) which is characterised by increased secretion of a variety of pro-inflammatory factors including cytokines, chemokines, growth factors and matrix remodelling factors and so on. Subsequent phenotypic analysis demonstrated that these SASP factors conferred paracrine pro-tumourigenic effects such as cell migration, invasion and angiogenesis both in vitro and in vivo. Finally, we observed a correlation between high levels of aneuploidy and senescence at the invasive front in invasive ductal breast carcinomas. Collectively, our findings demonstrate functional non-equivalence of discernable random aneuploidies on tumourigenesis and suggest a cell non-autonomous mechanism by which aneuploidy-induced senescence and SASP can affect the tumour microenvironment to promote tumour progression. |
author2 |
Karen Crasta |
author_facet |
Karen Crasta He, Qianqian |
format |
Theses and Dissertations |
author |
He, Qianqian |
author_sort |
He, Qianqian |
title |
Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects |
title_short |
Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects |
title_full |
Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects |
title_fullStr |
Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects |
title_full_unstemmed |
Chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects |
title_sort |
chromosomal instability-induced senescence potentiates cell non-autonomous tumourigenic effects |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/83258 http://hdl.handle.net/10220/48003 |
_version_ |
1759855078575964160 |