Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms

The compliant parallel mechanisms (CPM) used in precision positioners are commonly fabricated in parts by traditional manufacturing methods such as milling and wire-cut electrical discharge manufacturing (EDM). The performance of these positioners can therefore be significantly affected by assemblin...

Full description

Saved in:
Bibliographic Details
Main Authors: Pham, Minh Tuan, Teo, Tat Joo, Yeo, Song Huat
Other Authors: School of Mechanical and Aerospace Engineering
Format: Conference or Workshop Item
Language:English
Published: 2016
Subjects:
SLM
Online Access:https://hdl.handle.net/10356/84630
http://hdl.handle.net/10220/41844
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The compliant parallel mechanisms (CPM) used in precision positioners are commonly fabricated in parts by traditional manufacturing methods such as milling and wire-cut electrical discharge manufacturing (EDM). The performance of these positioners can therefore be significantly affected by assembling errors. This paper presents the investigation of the potential of 3D printing technology in fabricating precise-compliant devices through evaluating the performance of a 3D printed CPM. The design of a novel three degrees of freedom (DOF) CPM is first presented. The proposed CPM is monolithically fabricated by selective laser melting (SLM) technology, eliminating errors in the assembly process. Several experiments are carried out to evaluate the mechanical properties of the 3D printed CPM in terms of stiffness characteristics and dynamic response. The experimental performance of the 3D printed CPM is found to be within 12.5% of the results from simulation. The advantages as well as limitations of 3D printing technology in fabricating compliant devices are also discussed.