Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms
The compliant parallel mechanisms (CPM) used in precision positioners are commonly fabricated in parts by traditional manufacturing methods such as milling and wire-cut electrical discharge manufacturing (EDM). The performance of these positioners can therefore be significantly affected by assemblin...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2016
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84630 http://hdl.handle.net/10220/41844 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-84630 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-846302020-09-24T20:12:22Z Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms Pham, Minh Tuan Teo, Tat Joo Yeo, Song Huat School of Mechanical and Aerospace Engineering Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016) A*STAR SIMTech Singapore Centre for 3D Printing 3D Printing SLM The compliant parallel mechanisms (CPM) used in precision positioners are commonly fabricated in parts by traditional manufacturing methods such as milling and wire-cut electrical discharge manufacturing (EDM). The performance of these positioners can therefore be significantly affected by assembling errors. This paper presents the investigation of the potential of 3D printing technology in fabricating precise-compliant devices through evaluating the performance of a 3D printed CPM. The design of a novel three degrees of freedom (DOF) CPM is first presented. The proposed CPM is monolithically fabricated by selective laser melting (SLM) technology, eliminating errors in the assembly process. Several experiments are carried out to evaluate the mechanical properties of the 3D printed CPM in terms of stiffness characteristics and dynamic response. The experimental performance of the 3D printed CPM is found to be within 12.5% of the results from simulation. The advantages as well as limitations of 3D printing technology in fabricating compliant devices are also discussed. NRF (Natl Research Foundation, S’pore) Published version 2016-12-13T09:09:23Z 2019-12-06T15:48:40Z 2016-12-13T09:09:23Z 2019-12-06T15:48:40Z 2016 Conference Paper Pham, M. T., Teo, T. J., & Yeo, S. H. (2016). Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms. Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016), 109-115. https://hdl.handle.net/10356/84630 http://hdl.handle.net/10220/41844 en © 2016 by Pro-AM 2016 Organizers. Published by Research Publishing, Singapore 7 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
topic |
3D Printing SLM |
spellingShingle |
3D Printing SLM Pham, Minh Tuan Teo, Tat Joo Yeo, Song Huat Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms |
description |
The compliant parallel mechanisms (CPM) used in precision positioners are commonly fabricated in parts by traditional manufacturing methods such as milling and wire-cut electrical discharge manufacturing (EDM). The performance of these positioners can therefore be significantly affected by assembling errors. This paper presents the investigation of the potential of 3D printing technology in fabricating precise-compliant devices through evaluating the performance of a 3D printed CPM. The design of a novel three degrees of freedom (DOF) CPM is first presented. The proposed CPM is monolithically fabricated by selective laser melting (SLM) technology, eliminating errors in the assembly process. Several experiments are carried out to evaluate the mechanical properties of the 3D printed CPM in terms of stiffness characteristics and dynamic response. The experimental performance of the 3D printed CPM is found to be within 12.5% of the results from simulation. The advantages as well as limitations of 3D printing technology in fabricating compliant devices are also discussed. |
author2 |
School of Mechanical and Aerospace Engineering |
author_facet |
School of Mechanical and Aerospace Engineering Pham, Minh Tuan Teo, Tat Joo Yeo, Song Huat |
format |
Conference or Workshop Item |
author |
Pham, Minh Tuan Teo, Tat Joo Yeo, Song Huat |
author_sort |
Pham, Minh Tuan |
title |
Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms |
title_short |
Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms |
title_full |
Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms |
title_fullStr |
Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms |
title_full_unstemmed |
Investigation Of The Mechanical Properties Of 3D Printed Compliant Mechanisms |
title_sort |
investigation of the mechanical properties of 3d printed compliant mechanisms |
publishDate |
2016 |
url |
https://hdl.handle.net/10356/84630 http://hdl.handle.net/10220/41844 |
_version_ |
1681057719554932736 |