A nano-actuator via cavity-enhanced optical dipole force
In this paper, we demonstrate a nano-actuator using a silicon-based monolithic cavity nano-opto-mechanical system. The nano-actuator is constructed by a special designed nano-scale silicon suspended cantilever which is efficiently driven by the optical gradient force. In experiment, the actuator obt...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/84753 http://hdl.handle.net/10220/12484 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, we demonstrate a nano-actuator using a silicon-based monolithic cavity nano-opto-mechanical system. The nano-actuator is constructed by a special designed nano-scale silicon suspended cantilever which is efficiently driven by the optical gradient force. In experiment, the actuator obtains a tuning range up to 52 nm. The optical power consumption is reduced to 0.04 mW/nm, which is much smaller than typical value of 3mW/nm in optomechanical systems. |
---|