Theoretical analysis of friction compensation using sliding mode control

Friction is an undesired nonlinear phenomenon that reduces position and tracking accuracy in machine tools application. This paper focuses on development of control technique to compensate friction force at motion reversal of a drive system that generates quadrant glitch phenomenon thus improving tr...

全面介紹

Saved in:
書目詳細資料
Main Authors: Rafan, N. A., Jamaludin, Z., Chey, L. S., Chiew, T. H., Tjahjowidodo, Tegoeh.
其他作者: School of Mechanical and Aerospace Engineering
格式: Article
語言:English
出版: 2013
在線閱讀:https://hdl.handle.net/10356/85394
http://hdl.handle.net/10220/13171
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:Friction is an undesired nonlinear phenomenon that reduces position and tracking accuracy in machine tools application. This paper focuses on development of control technique to compensate friction force at motion reversal of a drive system that generates quadrant glitch phenomenon thus improving tracking accuracy. Sliding Mode Control (SMC) is designed to compensate friction. The Generalized Maxwell-Slip (GMS) friction model is applied for numerical analysis. The performance of the controller is analysed based on the reduction in the quadrant glitches magnitude. The performance of the SMC controller is compared with the classical PID controller. Results show that SMC controller yields the smallest quadrant glitch magnitudes.