Restoration of postbreakdown gate oxide by white-light illumination

From conductive-atomic-force-microscope probe measurement, we show that electrical conduction through a nanoscale percolation path in the MOSFET gate oxide can be disrupted, either completely or partially, by white-light illumination. This phenomenon is consistently observed in the SiO2 and HfO2 gat...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kawashima, Tomohito, Yew, Kwang Sing, Zhou, Yu, Ang, Diing Shenp, Bera, Milan Kumar, Zhang, Haizhong
其他作者: School of Electrical and Electronic Engineering
格式: Article
語言:English
出版: 2018
主題:
在線閱讀:https://hdl.handle.net/10356/86729
http://hdl.handle.net/10220/45199
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:From conductive-atomic-force-microscope probe measurement, we show that electrical conduction through a nanoscale percolation path in the MOSFET gate oxide can be disrupted, either completely or partially, by white-light illumination. This phenomenon is consistently observed in the SiO2 and HfO2 gate-oxide materials, and thus is believed to have originated from a common mechanism-light-stimulated oxygen migration and recombination with vacancy sites that constitute the percolation path. The finding points to the prospect of reliability rejuvenation by the light-assisted restoration of postelectrical-breakdown gate oxides, as well as light-enabled memory operation based on logic MOSFET devices.