Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli
Despite the broad-spectrum antimicrobial activities of silver, its internal usage is restricted, owing to the toxicity. Strategies to enhance its efficacy are highly desirable but rely heavily on the understanding of its molecular mechanism of action. However, up to now, no direct silver-targeting p...
Saved in:
Main Authors: | , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/90018 http://hdl.handle.net/10220/49373 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-90018 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-900182020-11-01T05:25:33Z Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli Wang, Haibo Yan, Aixin Liu, Zhigang Yang, Xinming Xu, Zeling Wang, Yuchuan Wang, Runming Hu, Ligang Xia, Wei Tang, Huiru Wang, Yulan Li, Hongyan Sun, Hongzhe Mohamad Koohi-Moghadam Sourjik, Victor Lee Kong Chian School of Medicine (LKCMedicine) Singapore Phenome Center Molecular Mechanism Antimicrobial Science::Medicine Despite the broad-spectrum antimicrobial activities of silver, its internal usage is restricted, owing to the toxicity. Strategies to enhance its efficacy are highly desirable but rely heavily on the understanding of its molecular mechanism of action. However, up to now, no direct silver-targeting proteins have been mined at a proteome-wide scale, which hinders systemic studies on the biological pathways interrupted by silver. Herein, we build up a unique system, namely liquid chromatography gel electrophoresis inductively coupled plasma mass spectrometry (LC-GE-ICP-MS), allowing 34 proteins directly bound by silver ions to be identified in Escherichia coli. By using integrated omic approaches, including metalloproteomics, metabolomics, bioinformatics, and systemic biology, we delineated the first dynamic antimicrobial actions of silver (Ag+) in E. coli, i.e., it primarily damages multiple enzymes in glycolysis and tricarboxylic acid (TCA) cycle, leading to the stalling of the oxidative branch of the TCA cycle and an adaptive metabolic divergence to the reductive glyoxylate pathway. It then further damages the adaptive glyoxylate pathway and suppresses the cellular oxidative stress responses, causing systemic damages and death of the bacterium. To harness these novel findings, we coadministrated metabolites involved in the Krebs cycles with Ag+ and found that they can significantly potentiate the efficacy of silver both in vitro and in an animal model. Our study reveals the comprehensive and dynamic mechanisms of Ag+ toxicity in E. coli cells and offers a novel and general approach for deciphering molecular mechanisms of metallodrugs in various pathogens and cells to facilitate the development of new therapeutics. Published version 2019-07-16T06:23:49Z 2019-12-06T17:38:49Z 2019-07-16T06:23:49Z 2019-12-06T17:38:49Z 2019 Journal Article Wang, H., Yan, A., Liu, Z., Yang, X., Xu, Z., Wang, Y., . . . Sun, H. (2019). Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLOS Biology, 17(6), e3000292-. doi:10.1371/journal.pbio.3000292 1544-9173 https://hdl.handle.net/10356/90018 http://hdl.handle.net/10220/49373 10.1371/journal.pbio.3000292 en PLOS Biology © 2019 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 31 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Molecular Mechanism Antimicrobial Science::Medicine |
spellingShingle |
Molecular Mechanism Antimicrobial Science::Medicine Wang, Haibo Yan, Aixin Liu, Zhigang Yang, Xinming Xu, Zeling Wang, Yuchuan Wang, Runming Hu, Ligang Xia, Wei Tang, Huiru Wang, Yulan Li, Hongyan Sun, Hongzhe Mohamad Koohi-Moghadam Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli |
description |
Despite the broad-spectrum antimicrobial activities of silver, its internal usage is restricted, owing to the toxicity. Strategies to enhance its efficacy are highly desirable but rely heavily on the understanding of its molecular mechanism of action. However, up to now, no direct silver-targeting proteins have been mined at a proteome-wide scale, which hinders systemic studies on the biological pathways interrupted by silver. Herein, we build up a unique system, namely liquid chromatography gel electrophoresis inductively coupled plasma mass spectrometry (LC-GE-ICP-MS), allowing 34 proteins directly bound by silver ions to be identified in Escherichia coli. By using integrated omic approaches, including metalloproteomics, metabolomics, bioinformatics, and systemic biology, we delineated the first dynamic antimicrobial actions of silver (Ag+) in E. coli, i.e., it primarily damages multiple enzymes in glycolysis and tricarboxylic acid (TCA) cycle, leading to the stalling of the oxidative branch of the TCA cycle and an adaptive metabolic divergence to the reductive glyoxylate pathway. It then further damages the adaptive glyoxylate pathway and suppresses the cellular oxidative stress responses, causing systemic damages and death of the bacterium. To harness these novel findings, we coadministrated metabolites involved in the Krebs cycles with Ag+ and found that they can significantly potentiate the efficacy of silver both in vitro and in an animal model. Our study reveals the comprehensive and dynamic mechanisms of Ag+ toxicity in E. coli cells and offers a novel and general approach for deciphering molecular mechanisms of metallodrugs in various pathogens and cells to facilitate the development of new therapeutics. |
author2 |
Sourjik, Victor |
author_facet |
Sourjik, Victor Wang, Haibo Yan, Aixin Liu, Zhigang Yang, Xinming Xu, Zeling Wang, Yuchuan Wang, Runming Hu, Ligang Xia, Wei Tang, Huiru Wang, Yulan Li, Hongyan Sun, Hongzhe Mohamad Koohi-Moghadam |
format |
Article |
author |
Wang, Haibo Yan, Aixin Liu, Zhigang Yang, Xinming Xu, Zeling Wang, Yuchuan Wang, Runming Hu, Ligang Xia, Wei Tang, Huiru Wang, Yulan Li, Hongyan Sun, Hongzhe Mohamad Koohi-Moghadam |
author_sort |
Wang, Haibo |
title |
Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli |
title_short |
Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli |
title_full |
Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli |
title_fullStr |
Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli |
title_full_unstemmed |
Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli |
title_sort |
deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in e. coli |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/90018 http://hdl.handle.net/10220/49373 |
_version_ |
1683494088589967360 |