Remote plasma-assisted low-temperature large-area graphene synthesis

Graphene is typically grown using thermal chemical vapor deposition (CVD) on metallic substrates such as copper and nickel at elevated temperatures above 1000 °C. The synthesis of large-area graphene at low temperature is highly desirable for large volume industrial production. In this paper, the au...

Full description

Saved in:
Bibliographic Details
Main Authors: Pae, Jian Yi, Medwal, Rohit, Vas, Joseph Vimal, Matham, Murukeshan Vadakke, Rawat, Rajdeep Singh
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/90039
http://hdl.handle.net/10220/49355
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Graphene is typically grown using thermal chemical vapor deposition (CVD) on metallic substrates such as copper and nickel at elevated temperatures above 1000 °C. The synthesis of large-area graphene at low temperature is highly desirable for large volume industrial production. In this paper, the authors report a remote plasma-assisted CVD graphene synthesis at a reduced temperature of 600 °C in a relatively shorter duration of 15 min. Scanning electron microscopy reveals the formation of large graphene crystal with an approximate size of 100 × 100 μm2 over the entire 2 × 10 cm2 surface of copper foil substrates. Raman spectra recorded for graphene grown at 600 °C show the presence of a graphene characteristic “2D” peak, attesting to the formation of graphene. The results show that it is possible to grow horizontal graphene at low temperatures and transfer it to flexible polyethylene terephthalate substrates. The utility of the synthesized graphene is ascertained through the successful fabrication of a flexible graphene-based electrochemical sensor for the detection of glucose concentration. The present research will have a direct impact on flexible wearable biosensors.