Nanoscale morphology for high hydrophobicity of a hard sol–gel thin film

It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by...

Full description

Saved in:
Bibliographic Details
Main Authors: Wu, Y. L., Zeng, X. T., Chen, Zhong
Other Authors: School of Materials Science & Engineering
Format: Article
Language:English
Published: 2013
Subjects:
Online Access:https://hdl.handle.net/10356/94600
http://hdl.handle.net/10220/9344
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by sol–gel technology and a low volume medium pressure (LVMP) spray process. The sol–gel formula consists of a pre-linked hydrophobic nano-cluster from hydroxyl-terminated polydimethylsiloxane, titanium tetraisopropoxide and a silica-based sol–gel matrix with silica hard fillers. Polydimethylsiloxane (PDMS) is uniformly distributed throughout the coating layer providing durable hydrophobic property. Mechanical properties are achieved by the hard matrix and hard fillers with the nano-structures. Due to the surface nano-morphology, a high degree of hydrophobicity was maintained with only 10 vol.% PDMS, while the hardness and abrasion resistance of the coatings were not significantly compromised. Chemical analyses by FTIR confirmed the uniform distribution of the PDMS and surface morphology analyses by atomic force microscopy (AFM) displayed the nano-surface structures that enhanced the hydrophobicity. The special surface nanostructures can be quantified using surface Kurtosis and ratio between asperity peak height to distance between peaks. The LVMP process influences the spray droplet size resulting in different surface structures.