Ferroelastic strain induced antiferroelectric-ferroelectric phase transformation in multilayer thin film structures
Coupling effects among mechanical, electrical and magnetic parameters in thin film structures including ferroic thin films provide exciting opportunity for creating device functionalities. For thin films deposited on a substrate, their mechanical stress and microstructure are usually determined by t...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Online Access: | https://hdl.handle.net/10356/95067 http://hdl.handle.net/10220/9398 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-95067 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-950672020-06-01T10:13:35Z Ferroelastic strain induced antiferroelectric-ferroelectric phase transformation in multilayer thin film structures Mirshekarloo, Meysam Sharifzadeh Yao, Kui Sritharan, Thirumany School of Materials Science & Engineering Coupling effects among mechanical, electrical and magnetic parameters in thin film structures including ferroic thin films provide exciting opportunity for creating device functionalities. For thin films deposited on a substrate, their mechanical stress and microstructure are usually determined by the composition and processing of the films and the lattice and thermal mismatch with the substrate. Here it is found that the stress and structure of an antiferroelectric (Pb0.97,La0.02)(Zr0.90,Sn0.05,Ti0.05)O3 (PLZST) thin film are changed completely by a ferroelastic strain in a magnetic shape memory (MSM) alloy Ni-Mn-Ga (NMG) thin film on the top of the PLZST, despite the existence of the substrate constraint. The ferroelastic strain in the NMG film results in antiferroelectric (AFE) to ferroelectric (FE) phase transformation in the PLZST layer underneath. This finding indicates a different strategy to modulate the structure and function for multilayer thin films and to create unprecedented devices with ferroic thin films. 2013-03-13T08:19:34Z 2019-12-06T19:07:36Z 2013-03-13T08:19:34Z 2019-12-06T19:07:36Z 2012 2012 Journal Article Mirshekarloo, M. S., Yao, K., & Sritharan, T. (2012). Ferroelastic Strain Induced Antiferroelectric-Ferroelectric Phase Transformation in Multilayer Thin Film Structures. Advanced Functional Materials, 22(19), 4159-4164. 1616-301X https://hdl.handle.net/10356/95067 http://hdl.handle.net/10220/9398 10.1002/adfm.201200832 en Advanced Functional Materials © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
institution |
Nanyang Technological University |
building |
NTU Library |
country |
Singapore |
collection |
DR-NTU |
language |
English |
description |
Coupling effects among mechanical, electrical and magnetic parameters in thin film structures including ferroic thin films provide exciting opportunity for creating device functionalities. For thin films deposited on a substrate, their mechanical stress and microstructure are usually determined by the composition and processing of the films and the lattice and thermal mismatch with the substrate. Here it is found that the stress and structure of an antiferroelectric (Pb0.97,La0.02)(Zr0.90,Sn0.05,Ti0.05)O3 (PLZST) thin film are changed completely by a ferroelastic strain in a magnetic shape memory (MSM) alloy Ni-Mn-Ga (NMG) thin film on the top of the PLZST, despite the existence of the substrate constraint. The ferroelastic strain in the NMG film results in antiferroelectric (AFE) to ferroelectric (FE) phase transformation in the PLZST layer underneath. This finding indicates a different strategy to modulate the structure and function for multilayer thin films and to create unprecedented devices with ferroic thin films. |
author2 |
School of Materials Science & Engineering |
author_facet |
School of Materials Science & Engineering Mirshekarloo, Meysam Sharifzadeh Yao, Kui Sritharan, Thirumany |
format |
Article |
author |
Mirshekarloo, Meysam Sharifzadeh Yao, Kui Sritharan, Thirumany |
spellingShingle |
Mirshekarloo, Meysam Sharifzadeh Yao, Kui Sritharan, Thirumany Ferroelastic strain induced antiferroelectric-ferroelectric phase transformation in multilayer thin film structures |
author_sort |
Mirshekarloo, Meysam Sharifzadeh |
title |
Ferroelastic strain induced antiferroelectric-ferroelectric phase transformation in multilayer thin film structures |
title_short |
Ferroelastic strain induced antiferroelectric-ferroelectric phase transformation in multilayer thin film structures |
title_full |
Ferroelastic strain induced antiferroelectric-ferroelectric phase transformation in multilayer thin film structures |
title_fullStr |
Ferroelastic strain induced antiferroelectric-ferroelectric phase transformation in multilayer thin film structures |
title_full_unstemmed |
Ferroelastic strain induced antiferroelectric-ferroelectric phase transformation in multilayer thin film structures |
title_sort |
ferroelastic strain induced antiferroelectric-ferroelectric phase transformation in multilayer thin film structures |
publishDate |
2013 |
url |
https://hdl.handle.net/10356/95067 http://hdl.handle.net/10220/9398 |
_version_ |
1681059632180625408 |