A model for understanding electromigration-induced void evolution in dual-inlaid Cu interconnect structures
Electromigration-induced void evolution in various dual-inlaid copper (Cu) interconnect structures was simulated by applying a phenomenological model assisted by Monte Carlo-based simulations, considering the redistribution of heterogeneously nucleated voids and/or pre-existing vacancy clusters at t...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/96072 http://hdl.handle.net/10220/18150 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Electromigration-induced void evolution in various dual-inlaid copper (Cu) interconnect structures was simulated by applying a phenomenological model assisted by Monte Carlo-based simulations, considering the redistribution of heterogeneously nucleated voids and/or pre-existing vacancy clusters at the Cu/dielectric cap interface during electromigration. The results indicate that this model can qualitatively explain the electromigration-induced void evolution observed during experimental in situ secondary-electron microscopy (SEM) investigations as well as in various other reported studies. The electromigration mechanism in Cu interconnect structures and differences in the peculiar electromigration-induced void evolution in various dual-inlaid Cu interconnect structures can be clearly understood based on this model. These findings warrant reinvestigation of technologically important electromigration mechanisms by developing rigorous models based on similar concepts. |
---|