Thermal-mechanical design of sandwich SiC power module with micro-channel cooling
A sandwich packaging structure of SiC power module for HEV application has been designed and numerically investigated by CFD study. The design has a micro-channel heat sink integrated in the back Cu-layer of DBC substrate. Doubleside cooling is adopted and liquid coolant (ethylene glycol, 105 °C) fl...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2013
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/96479 http://hdl.handle.net/10220/17272 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | A sandwich packaging structure of SiC power module for HEV application has been designed and numerically investigated by CFD study. The design has a micro-channel heat sink integrated in the back Cu-layer of DBC substrate. Doubleside cooling is adopted and liquid coolant (ethylene glycol, 105 °C) flows in opposite directions in the two heat sinks. Compared with wirebonding packaging, the proposed sandwich structure can almost double the cooling efficiency (thermal resistance 0.11 K/W) and temperature-distribution uniformity. Finite element analysis of thermal stress was further carried out to check that the CTE mismatch in the packaging has been minimized. |
---|