Thermal-mechanical design of sandwich SiC power module with micro-channel cooling
A sandwich packaging structure of SiC power module for HEV application has been designed and numerically investigated by CFD study. The design has a micro-channel heat sink integrated in the back Cu-layer of DBC substrate. Doubleside cooling is adopted and liquid coolant (ethylene glycol, 105 °C) fl...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2013
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/96479 http://hdl.handle.net/10220/17272 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A sandwich packaging structure of SiC power module for HEV application has been designed and numerically investigated by CFD study. The design has a micro-channel heat sink integrated in the back Cu-layer of DBC substrate. Doubleside cooling is adopted and liquid coolant (ethylene glycol, 105 °C) flows in opposite directions in the two heat sinks. Compared with wirebonding packaging, the proposed sandwich structure can almost double the cooling efficiency (thermal resistance 0.11 K/W) and temperature-distribution uniformity. Finite element analysis of thermal stress was further carried out to check that the CTE mismatch in the packaging has been minimized. |
---|