Ambulatory measurement of elbow kinematics using inertial measurement units

Using inertial measurement unit (IMU) to measure human body kinematics has gained popularity because of its low-cost and ease of handling, compared to optoelectronic and electromagnetic systems. However, its usage has to be supported by post-processing protocols that integrate the data with reliable...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Ang, Wei Sin, Chen, I-Ming, Yuan, Qilong
مؤلفون آخرون: School of Mechanical and Aerospace Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2013
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/96513
http://hdl.handle.net/10220/17459
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:Using inertial measurement unit (IMU) to measure human body kinematics has gained popularity because of its low-cost and ease of handling, compared to optoelectronic and electromagnetic systems. However, its usage has to be supported by post-processing protocols that integrate the data with reliable kinematic model to improve the accuracy. In this paper, a method to calculate the rotation axes and angles of the elbow joint from IMU data is presented. The method makes use of product of exponential (POE) representation and an optimization process to decompose the rotation matrix into angles along the two rotation axes without introducing the carrying angle and assuming orthogonality of the two axes. Using the method, the estimated errors of the calculated axes of rotation are comparable to published results, and the rotation angles yield an orientational deviation of less than 1.5°.