Characteristics of a single-layer graphene field effect transistor with UV/ozone treatment
The performance of a single-layer graphene field effect transistor treated with UV/ozone at various temperatures is studied. It is observed that the number of the defects in graphene sheet increases with the UV/ozone treatment time, evidenced by Raman spectra. Moreover, the UV/ozone treatment dopes...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2013
|
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/97792 http://hdl.handle.net/10220/13225 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | The performance of a single-layer graphene field effect transistor treated with UV/ozone at various temperatures is studied. It is observed that the number of the defects in graphene sheet increases with the UV/ozone treatment time, evidenced by Raman spectra. Moreover, the UV/ozone treatment dopes graphene into p-type as the time increases, which is consistent with the electric transfer measurements. With the increase in the UV/ozone treatment time, the mobility of graphene transistor degrades, and the degradation accelerates with the increase in temperature. We further verified by XPS measurement that the oxygen related carbon group O=C-O formation is the main cause for the mobility degradation. |
---|