Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles
Reported solution-processed field-effect transistor (FET) devices based on single-walled carbon nanotube (SWNT) networks have either high mobility but low on/off ratio or vice versa. Recently, Arnold et al. (Nat. Nanotechnol. 2006, 1, 60−65) have made significant improvements in obtaining semiconduc...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2011
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/98287 http://hdl.handle.net/10220/7422 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Reported solution-processed field-effect transistor (FET) devices based on single-walled carbon nanotube (SWNT) networks have either high mobility but low on/off ratio or vice versa. Recently, Arnold et al. (Nat. Nanotechnol. 2006, 1, 60−65) have made significant improvements in obtaining semiconductor-enriched SWNTs by using density-gradient ultracentrifugation. Here, we report that removing the SWNT bundles using organic−aqueous interfacial purification can further enhance the electrical performance of SWNT-FETs. The on/off ratio of the SWNT-FET is improved by 1 order of magnitude. By combining density-gradient ultracentrifugation and interfacial purification, it is possible to obtain high on/off ratio and high mobility of solution-processed SWNT-FETs at a promising yield. |
---|