Modeling and layout optimization techniques for silicon-based symmetrical spiral inductors
A scalable and highly accurate RF symmetrical inductor model (with model error of less than 5%) has been developed from more than 100 test structures, enabling device performance versus layout size trade-offs and optimization up to 10 GHz. Large conductor width designs are found to yield good perfor...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2014
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/99907 http://hdl.handle.net/10220/18633 http://www.jpier.org/PIER/pier.php?paper=13082001 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | A scalable and highly accurate RF symmetrical inductor model (with model error of less than 5%) has been developed from more than 100 test structures, enabling device performance versus layout size trade-offs and optimization up to 10 GHz. Large conductor width designs are found to yield good performance for inductors with small inductance values. However, as inductance or frequency increases, interactions between metallization resistive and substrate losses render the use of large widths unfavorable as they consume silicon area and degrade device performance. These findings are particularly important when exploiting the cost-effective silicon-based RF technologies for applications with operating frequencies greater than 2.5 GHz. |
---|