AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes

10.1371/journal.pone.0081870

Saved in:
Bibliographic Details
Main Authors: Jenkins Y., Sun T.-Q., Markovtsov V., Foretz M., Li W., Nguyen H., Li Y., Pan A., Uy G., Gross L., Baltgalvis K., Yung S.L., Gururaja T., Kinoshita T., Owyang A., Smith I.J., McCaughey K., White K., Godinez G., Alcantara R., Choy C., Ren H., Basile R., Sweeny D.J., Xu X., Issakani S.D., Carroll D.C., Goff D.A., Shaw S.J., Singh R., Boros L.G., Laplante M.-A., Marcotte B., Kohen R., Viollet B., Marette A., Payan D.G., Kinsella T.M., Hitoshi Y.
Other Authors: DUKE-NUS MEDICAL SCHOOL
Format: Article
Published: 2019
Subjects:
Online Access:https://scholarbank.nus.edu.sg/handle/10635/161450
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
id sg-nus-scholar.10635-161450
record_format dspace
spelling sg-nus-scholar.10635-1614502023-10-31T08:33:39Z AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes Jenkins Y. Sun T.-Q. Markovtsov V. Foretz M. Li W. Nguyen H. Li Y. Pan A. Uy G. Gross L. Baltgalvis K. Yung S.L. Gururaja T. Kinoshita T. Owyang A. Smith I.J. McCaughey K. White K. Godinez G. Alcantara R. Choy C. Ren H. Basile R. Sweeny D.J. Xu X. Issakani S.D. Carroll D.C. Goff D.A. Shaw S.J. Singh R. Boros L.G. Laplante M.-A. Marcotte B. Kohen R. Viollet B. Marette A. Payan D.G. Kinsella T.M. Hitoshi Y. DUKE-NUS MEDICAL SCHOOL branched chain amino acid glucose glucose c 13 hydroxymethylglutaryl coenzyme A reductase kinase hydroxymethylglutaryl coenzyme A reductase kinase activator metformin palmitic acid c 13 r 419 radiopharmaceutical agent reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) unclassified drug adipose tissue animal cell animal experiment animal model animal tissue article catabolism concentration response controlled study diabetes mellitus drug mechanism drug potency drug structure enzyme activation enzyme inhibition fatty acid oxidation gluconeogenesis glucose homeostasis glucose oxidation glucose transport human human cell in vitro study in vivo study lipid metabolism lipogenesis liver male metabolic parameters metabolomics mitochondrial respiration mouse muscle cell nonhuman nutrient dynamics signal transduction skeletal muscle Amino Acids, Branched-Chain AMP-Activated Protein Kinases Animals Diabetes Mellitus, Experimental Enzyme Activation Fatty Acids Glucose Hep G2 Cells Humans Hypoglycemic Agents Metformin Mice Mitochondria, Liver Muscle Cells Oxidation-Reduction Palmitates Protein Kinase Inhibitors 10.1371/journal.pone.0081870 PLoS ONE 8 12 e81870 2019-11-05T02:08:34Z 2019-11-05T02:08:34Z 2013 Article Jenkins Y., Sun T.-Q., Markovtsov V., Foretz M., Li W., Nguyen H., Li Y., Pan A., Uy G., Gross L., Baltgalvis K., Yung S.L., Gururaja T., Kinoshita T., Owyang A., Smith I.J., McCaughey K., White K., Godinez G., Alcantara R., Choy C., Ren H., Basile R., Sweeny D.J., Xu X., Issakani S.D., Carroll D.C., Goff D.A., Shaw S.J., Singh R., Boros L.G., Laplante M.-A., Marcotte B., Kohen R., Viollet B., Marette A., Payan D.G., Kinsella T.M., Hitoshi Y. (2013). AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes. PLoS ONE 8 (12) : e81870. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0081870 1932-6203 https://scholarbank.nus.edu.sg/handle/10635/161450 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Unpaywall 20191101
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
topic branched chain amino acid
glucose
glucose c 13
hydroxymethylglutaryl coenzyme A reductase kinase
hydroxymethylglutaryl coenzyme A reductase kinase activator
metformin
palmitic acid c 13
r 419
radiopharmaceutical agent
reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone)
unclassified drug
adipose tissue
animal cell
animal experiment
animal model
animal tissue
article
catabolism
concentration response
controlled study
diabetes mellitus
drug mechanism
drug potency
drug structure
enzyme activation
enzyme inhibition
fatty acid oxidation
gluconeogenesis
glucose homeostasis
glucose oxidation
glucose transport
human
human cell
in vitro study
in vivo study
lipid metabolism
lipogenesis
liver
male
metabolic parameters
metabolomics
mitochondrial respiration
mouse
muscle cell
nonhuman
nutrient dynamics
signal transduction
skeletal muscle
Amino Acids, Branched-Chain
AMP-Activated Protein Kinases
Animals
Diabetes Mellitus, Experimental
Enzyme Activation
Fatty Acids
Glucose
Hep G2 Cells
Humans
Hypoglycemic Agents
Metformin
Mice
Mitochondria, Liver
Muscle Cells
Oxidation-Reduction
Palmitates
Protein Kinase Inhibitors
spellingShingle branched chain amino acid
glucose
glucose c 13
hydroxymethylglutaryl coenzyme A reductase kinase
hydroxymethylglutaryl coenzyme A reductase kinase activator
metformin
palmitic acid c 13
r 419
radiopharmaceutical agent
reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone)
unclassified drug
adipose tissue
animal cell
animal experiment
animal model
animal tissue
article
catabolism
concentration response
controlled study
diabetes mellitus
drug mechanism
drug potency
drug structure
enzyme activation
enzyme inhibition
fatty acid oxidation
gluconeogenesis
glucose homeostasis
glucose oxidation
glucose transport
human
human cell
in vitro study
in vivo study
lipid metabolism
lipogenesis
liver
male
metabolic parameters
metabolomics
mitochondrial respiration
mouse
muscle cell
nonhuman
nutrient dynamics
signal transduction
skeletal muscle
Amino Acids, Branched-Chain
AMP-Activated Protein Kinases
Animals
Diabetes Mellitus, Experimental
Enzyme Activation
Fatty Acids
Glucose
Hep G2 Cells
Humans
Hypoglycemic Agents
Metformin
Mice
Mitochondria, Liver
Muscle Cells
Oxidation-Reduction
Palmitates
Protein Kinase Inhibitors
Jenkins Y.
Sun T.-Q.
Markovtsov V.
Foretz M.
Li W.
Nguyen H.
Li Y.
Pan A.
Uy G.
Gross L.
Baltgalvis K.
Yung S.L.
Gururaja T.
Kinoshita T.
Owyang A.
Smith I.J.
McCaughey K.
White K.
Godinez G.
Alcantara R.
Choy C.
Ren H.
Basile R.
Sweeny D.J.
Xu X.
Issakani S.D.
Carroll D.C.
Goff D.A.
Shaw S.J.
Singh R.
Boros L.G.
Laplante M.-A.
Marcotte B.
Kohen R.
Viollet B.
Marette A.
Payan D.G.
Kinsella T.M.
Hitoshi Y.
AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes
description 10.1371/journal.pone.0081870
author2 DUKE-NUS MEDICAL SCHOOL
author_facet DUKE-NUS MEDICAL SCHOOL
Jenkins Y.
Sun T.-Q.
Markovtsov V.
Foretz M.
Li W.
Nguyen H.
Li Y.
Pan A.
Uy G.
Gross L.
Baltgalvis K.
Yung S.L.
Gururaja T.
Kinoshita T.
Owyang A.
Smith I.J.
McCaughey K.
White K.
Godinez G.
Alcantara R.
Choy C.
Ren H.
Basile R.
Sweeny D.J.
Xu X.
Issakani S.D.
Carroll D.C.
Goff D.A.
Shaw S.J.
Singh R.
Boros L.G.
Laplante M.-A.
Marcotte B.
Kohen R.
Viollet B.
Marette A.
Payan D.G.
Kinsella T.M.
Hitoshi Y.
format Article
author Jenkins Y.
Sun T.-Q.
Markovtsov V.
Foretz M.
Li W.
Nguyen H.
Li Y.
Pan A.
Uy G.
Gross L.
Baltgalvis K.
Yung S.L.
Gururaja T.
Kinoshita T.
Owyang A.
Smith I.J.
McCaughey K.
White K.
Godinez G.
Alcantara R.
Choy C.
Ren H.
Basile R.
Sweeny D.J.
Xu X.
Issakani S.D.
Carroll D.C.
Goff D.A.
Shaw S.J.
Singh R.
Boros L.G.
Laplante M.-A.
Marcotte B.
Kohen R.
Viollet B.
Marette A.
Payan D.G.
Kinsella T.M.
Hitoshi Y.
author_sort Jenkins Y.
title AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes
title_short AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes
title_full AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes
title_fullStr AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes
title_full_unstemmed AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes
title_sort ampk activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes
publishDate 2019
url https://scholarbank.nus.edu.sg/handle/10635/161450
_version_ 1781791765655715840