AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes
10.1371/journal.pone.0081870
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
2019
|
Subjects: | |
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/161450 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
id |
sg-nus-scholar.10635-161450 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-1614502023-10-31T08:33:39Z AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes Jenkins Y. Sun T.-Q. Markovtsov V. Foretz M. Li W. Nguyen H. Li Y. Pan A. Uy G. Gross L. Baltgalvis K. Yung S.L. Gururaja T. Kinoshita T. Owyang A. Smith I.J. McCaughey K. White K. Godinez G. Alcantara R. Choy C. Ren H. Basile R. Sweeny D.J. Xu X. Issakani S.D. Carroll D.C. Goff D.A. Shaw S.J. Singh R. Boros L.G. Laplante M.-A. Marcotte B. Kohen R. Viollet B. Marette A. Payan D.G. Kinsella T.M. Hitoshi Y. DUKE-NUS MEDICAL SCHOOL branched chain amino acid glucose glucose c 13 hydroxymethylglutaryl coenzyme A reductase kinase hydroxymethylglutaryl coenzyme A reductase kinase activator metformin palmitic acid c 13 r 419 radiopharmaceutical agent reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) unclassified drug adipose tissue animal cell animal experiment animal model animal tissue article catabolism concentration response controlled study diabetes mellitus drug mechanism drug potency drug structure enzyme activation enzyme inhibition fatty acid oxidation gluconeogenesis glucose homeostasis glucose oxidation glucose transport human human cell in vitro study in vivo study lipid metabolism lipogenesis liver male metabolic parameters metabolomics mitochondrial respiration mouse muscle cell nonhuman nutrient dynamics signal transduction skeletal muscle Amino Acids, Branched-Chain AMP-Activated Protein Kinases Animals Diabetes Mellitus, Experimental Enzyme Activation Fatty Acids Glucose Hep G2 Cells Humans Hypoglycemic Agents Metformin Mice Mitochondria, Liver Muscle Cells Oxidation-Reduction Palmitates Protein Kinase Inhibitors 10.1371/journal.pone.0081870 PLoS ONE 8 12 e81870 2019-11-05T02:08:34Z 2019-11-05T02:08:34Z 2013 Article Jenkins Y., Sun T.-Q., Markovtsov V., Foretz M., Li W., Nguyen H., Li Y., Pan A., Uy G., Gross L., Baltgalvis K., Yung S.L., Gururaja T., Kinoshita T., Owyang A., Smith I.J., McCaughey K., White K., Godinez G., Alcantara R., Choy C., Ren H., Basile R., Sweeny D.J., Xu X., Issakani S.D., Carroll D.C., Goff D.A., Shaw S.J., Singh R., Boros L.G., Laplante M.-A., Marcotte B., Kohen R., Viollet B., Marette A., Payan D.G., Kinsella T.M., Hitoshi Y. (2013). AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes. PLoS ONE 8 (12) : e81870. ScholarBank@NUS Repository. https://doi.org/10.1371/journal.pone.0081870 1932-6203 https://scholarbank.nus.edu.sg/handle/10635/161450 Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Unpaywall 20191101 |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
topic |
branched chain amino acid glucose glucose c 13 hydroxymethylglutaryl coenzyme A reductase kinase hydroxymethylglutaryl coenzyme A reductase kinase activator metformin palmitic acid c 13 r 419 radiopharmaceutical agent reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) unclassified drug adipose tissue animal cell animal experiment animal model animal tissue article catabolism concentration response controlled study diabetes mellitus drug mechanism drug potency drug structure enzyme activation enzyme inhibition fatty acid oxidation gluconeogenesis glucose homeostasis glucose oxidation glucose transport human human cell in vitro study in vivo study lipid metabolism lipogenesis liver male metabolic parameters metabolomics mitochondrial respiration mouse muscle cell nonhuman nutrient dynamics signal transduction skeletal muscle Amino Acids, Branched-Chain AMP-Activated Protein Kinases Animals Diabetes Mellitus, Experimental Enzyme Activation Fatty Acids Glucose Hep G2 Cells Humans Hypoglycemic Agents Metformin Mice Mitochondria, Liver Muscle Cells Oxidation-Reduction Palmitates Protein Kinase Inhibitors |
spellingShingle |
branched chain amino acid glucose glucose c 13 hydroxymethylglutaryl coenzyme A reductase kinase hydroxymethylglutaryl coenzyme A reductase kinase activator metformin palmitic acid c 13 r 419 radiopharmaceutical agent reduced nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) unclassified drug adipose tissue animal cell animal experiment animal model animal tissue article catabolism concentration response controlled study diabetes mellitus drug mechanism drug potency drug structure enzyme activation enzyme inhibition fatty acid oxidation gluconeogenesis glucose homeostasis glucose oxidation glucose transport human human cell in vitro study in vivo study lipid metabolism lipogenesis liver male metabolic parameters metabolomics mitochondrial respiration mouse muscle cell nonhuman nutrient dynamics signal transduction skeletal muscle Amino Acids, Branched-Chain AMP-Activated Protein Kinases Animals Diabetes Mellitus, Experimental Enzyme Activation Fatty Acids Glucose Hep G2 Cells Humans Hypoglycemic Agents Metformin Mice Mitochondria, Liver Muscle Cells Oxidation-Reduction Palmitates Protein Kinase Inhibitors Jenkins Y. Sun T.-Q. Markovtsov V. Foretz M. Li W. Nguyen H. Li Y. Pan A. Uy G. Gross L. Baltgalvis K. Yung S.L. Gururaja T. Kinoshita T. Owyang A. Smith I.J. McCaughey K. White K. Godinez G. Alcantara R. Choy C. Ren H. Basile R. Sweeny D.J. Xu X. Issakani S.D. Carroll D.C. Goff D.A. Shaw S.J. Singh R. Boros L.G. Laplante M.-A. Marcotte B. Kohen R. Viollet B. Marette A. Payan D.G. Kinsella T.M. Hitoshi Y. AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes |
description |
10.1371/journal.pone.0081870 |
author2 |
DUKE-NUS MEDICAL SCHOOL |
author_facet |
DUKE-NUS MEDICAL SCHOOL Jenkins Y. Sun T.-Q. Markovtsov V. Foretz M. Li W. Nguyen H. Li Y. Pan A. Uy G. Gross L. Baltgalvis K. Yung S.L. Gururaja T. Kinoshita T. Owyang A. Smith I.J. McCaughey K. White K. Godinez G. Alcantara R. Choy C. Ren H. Basile R. Sweeny D.J. Xu X. Issakani S.D. Carroll D.C. Goff D.A. Shaw S.J. Singh R. Boros L.G. Laplante M.-A. Marcotte B. Kohen R. Viollet B. Marette A. Payan D.G. Kinsella T.M. Hitoshi Y. |
format |
Article |
author |
Jenkins Y. Sun T.-Q. Markovtsov V. Foretz M. Li W. Nguyen H. Li Y. Pan A. Uy G. Gross L. Baltgalvis K. Yung S.L. Gururaja T. Kinoshita T. Owyang A. Smith I.J. McCaughey K. White K. Godinez G. Alcantara R. Choy C. Ren H. Basile R. Sweeny D.J. Xu X. Issakani S.D. Carroll D.C. Goff D.A. Shaw S.J. Singh R. Boros L.G. Laplante M.-A. Marcotte B. Kohen R. Viollet B. Marette A. Payan D.G. Kinsella T.M. Hitoshi Y. |
author_sort |
Jenkins Y. |
title |
AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes |
title_short |
AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes |
title_full |
AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes |
title_fullStr |
AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes |
title_full_unstemmed |
AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes |
title_sort |
ampk activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes |
publishDate |
2019 |
url |
https://scholarbank.nus.edu.sg/handle/10635/161450 |
_version_ |
1781791765655715840 |