Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing

10.1109/VLSITechnologyandCir46769.2022.9830250

Saved in:
Bibliographic Details
Main Authors: Umesh Chand, Mohamed M Sabry Aly, Manohar Lal, Chen Chun-Kuei, Sonu Hooda, Shih-Hao Tsai, Zihang Fang, Hasita Veluri, Aaron Voon-Yew Thean
Other Authors: DEAN'S OFFICE (ENGINEERING)
Format: Conference or Workshop Item
Language:English
Published: IEEE 2022
Online Access:https://scholarbank.nus.edu.sg/handle/10635/232258
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: National University of Singapore
Language: English
id sg-nus-scholar.10635-232258
record_format dspace
spelling sg-nus-scholar.10635-2322582024-04-16T11:52:30Z Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing Umesh Chand Mohamed M Sabry Aly Manohar Lal Chen Chun-Kuei Sonu Hooda Shih-Hao Tsai Zihang Fang Hasita Veluri Aaron Voon-Yew Thean DEAN'S OFFICE (ENGINEERING) ELECTRICAL AND COMPUTER ENGINEERING 10.1109/VLSITechnologyandCir46769.2022.9830250 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 326-327 2022-10-12T01:37:36Z 2022-10-12T01:37:36Z 2022-06-12 Conference Paper Umesh Chand, Mohamed M Sabry Aly, Manohar Lal, Chen Chun-Kuei, Sonu Hooda, Shih-Hao Tsai, Zihang Fang, Hasita Veluri, Aaron Voon-Yew Thean (2022-06-12). Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) : 326-327. ScholarBank@NUS Repository. https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830250 978-1-6654-9773-2 https://scholarbank.nus.edu.sg/handle/10635/232258 en CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ IEEE
institution National University of Singapore
building NUS Library
continent Asia
country Singapore
Singapore
content_provider NUS Library
collection ScholarBank@NUS
language English
description 10.1109/VLSITechnologyandCir46769.2022.9830250
author2 DEAN'S OFFICE (ENGINEERING)
author_facet DEAN'S OFFICE (ENGINEERING)
Umesh Chand
Mohamed M Sabry Aly
Manohar Lal
Chen Chun-Kuei
Sonu Hooda
Shih-Hao Tsai
Zihang Fang
Hasita Veluri
Aaron Voon-Yew Thean
format Conference or Workshop Item
author Umesh Chand
Mohamed M Sabry Aly
Manohar Lal
Chen Chun-Kuei
Sonu Hooda
Shih-Hao Tsai
Zihang Fang
Hasita Veluri
Aaron Voon-Yew Thean
spellingShingle Umesh Chand
Mohamed M Sabry Aly
Manohar Lal
Chen Chun-Kuei
Sonu Hooda
Shih-Hao Tsai
Zihang Fang
Hasita Veluri
Aaron Voon-Yew Thean
Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing
author_sort Umesh Chand
title Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing
title_short Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing
title_full Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing
title_fullStr Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing
title_full_unstemmed Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing
title_sort sub-10nm ultra-thin zno channel fet with record-high 561 µa/µm ion at vds 1v, high µ-84 cm2/v-s and1t-1rram memory cell demonstration memory implications for energy-efficient deep-learning computing
publisher IEEE
publishDate 2022
url https://scholarbank.nus.edu.sg/handle/10635/232258
_version_ 1800915601445617664