Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing
10.1109/VLSITechnologyandCir46769.2022.9830250
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
IEEE
2022
|
Online Access: | https://scholarbank.nus.edu.sg/handle/10635/232258 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | National University of Singapore |
Language: | English |
id |
sg-nus-scholar.10635-232258 |
---|---|
record_format |
dspace |
spelling |
sg-nus-scholar.10635-2322582024-04-16T11:52:30Z Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing Umesh Chand Mohamed M Sabry Aly Manohar Lal Chen Chun-Kuei Sonu Hooda Shih-Hao Tsai Zihang Fang Hasita Veluri Aaron Voon-Yew Thean DEAN'S OFFICE (ENGINEERING) ELECTRICAL AND COMPUTER ENGINEERING 10.1109/VLSITechnologyandCir46769.2022.9830250 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 326-327 2022-10-12T01:37:36Z 2022-10-12T01:37:36Z 2022-06-12 Conference Paper Umesh Chand, Mohamed M Sabry Aly, Manohar Lal, Chen Chun-Kuei, Sonu Hooda, Shih-Hao Tsai, Zihang Fang, Hasita Veluri, Aaron Voon-Yew Thean (2022-06-12). Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) : 326-327. ScholarBank@NUS Repository. https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830250 978-1-6654-9773-2 https://scholarbank.nus.edu.sg/handle/10635/232258 en CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ IEEE |
institution |
National University of Singapore |
building |
NUS Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NUS Library |
collection |
ScholarBank@NUS |
language |
English |
description |
10.1109/VLSITechnologyandCir46769.2022.9830250 |
author2 |
DEAN'S OFFICE (ENGINEERING) |
author_facet |
DEAN'S OFFICE (ENGINEERING) Umesh Chand Mohamed M Sabry Aly Manohar Lal Chen Chun-Kuei Sonu Hooda Shih-Hao Tsai Zihang Fang Hasita Veluri Aaron Voon-Yew Thean |
format |
Conference or Workshop Item |
author |
Umesh Chand Mohamed M Sabry Aly Manohar Lal Chen Chun-Kuei Sonu Hooda Shih-Hao Tsai Zihang Fang Hasita Veluri Aaron Voon-Yew Thean |
spellingShingle |
Umesh Chand Mohamed M Sabry Aly Manohar Lal Chen Chun-Kuei Sonu Hooda Shih-Hao Tsai Zihang Fang Hasita Veluri Aaron Voon-Yew Thean Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing |
author_sort |
Umesh Chand |
title |
Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing |
title_short |
Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing |
title_full |
Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing |
title_fullStr |
Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing |
title_full_unstemmed |
Sub-10nm Ultra-thin ZnO Channel FET with Record-High 561 µA/µm ION at VDS 1V, High µ-84 cm2/V-s and1T-1RRAM Memory Cell Demonstration Memory Implications for Energy-Efficient Deep-Learning Computing |
title_sort |
sub-10nm ultra-thin zno channel fet with record-high 561 µa/µm ion at vds 1v, high µ-84 cm2/v-s and1t-1rram memory cell demonstration memory implications for energy-efficient deep-learning computing |
publisher |
IEEE |
publishDate |
2022 |
url |
https://scholarbank.nus.edu.sg/handle/10635/232258 |
_version_ |
1800915601445617664 |