Infinite time horizon safety of Bayesian neural networks
Bayesian neural networks (BNNs) place distributions over the weights of a neural network to model uncertainty in the data and the network’s prediction. We consider the problem of verifying safety when running a Bayesian neural network policy in a feedback loop with infinite time horizon systems. Com...
محفوظ في:
المؤلفون الرئيسيون: | LECHNER, Mathias, ZIKELIC, Dorde, CHATTERJEE, Krishnendu, HENZINGER, Thomas A. |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9066 https://ink.library.smu.edu.sg/context/sis_research/article/10069/viewcontent/NeurIPS_2021_infinite_time_horizon_safety_of_bayesian_neural_networks_Paper.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Stability verification in stochastic control systems via neural network supermartingales
بواسطة: LECHNER, Mathias, وآخرون
منشور في: (2024) -
Quantization-aware interval bound propagation for training certifiably robust quantized neural networks
بواسطة: LECHNER, Mathias, وآخرون
منشور في: (2023) -
Scalable verification of quantized neural networks
بواسطة: HENZINGER, Thomas A., وآخرون
منشور في: (2021) -
A learner-verifier framework for neural network controllers and certificates of stochastic systems
بواسطة: CHATTERJEE, Krishnendu, وآخرون
منشور في: (2023) -
Social balance on networks: Local minima and best-edge dynamics
بواسطة: CHATTERJEE, Krishnendu, وآخرون
منشور في: (2024)