Reward penalties on augmented states for solving richly constrained RL effectively
Constrained Reinforcement Learning employs trajectory-based cost constraints (such as expected cost, Value at Risk, or Conditional VaR cost) to compute safe policies. The challenge lies in handling these constraints effectively while optimizing expected reward. Existing methods convert such trajecto...
Saved in:
Main Authors: | HAO, Jiang, MAI, Tien, VARAKANTHAN, Pradeep, HOANG, Minh Huy |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2024
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/9685 https://ink.library.smu.edu.sg/context/sis_research/article/10685/viewcontent/29962_Article_Text_34016_1_2_20240324.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Financial portfolio optimization: an autoregressive deep reinforcement learning algorithm with learned intrinsic rewards
由: Lim, Magdalene Hui Qi
出版: (2024) -
SINGLE TRAJECTORY CONVERGENCE IN REINFORCEMENT LEARNING PROBLEMS WITH VECTORIAL REWARDS
由: EWE ZI YI
出版: (2021) -
A STUDY OF MARKOV DECISIONS PROCESSES IN FINITE SPACES AND APPLICATION ON FISHING QUOTAS
由: CECILE MONIQUE HELENE DECKER
出版: (2023) -
Imitate the good and avoid the bad: An incremental approach to safe reinforcement learning
由: HOANG, Minh Huy, et al.
出版: (2024) -
Safety through feedback in constrained RL
由: CHIRRA, Shashank Reddy, et al.
出版: (2024)