Beyond textual constraints : Learning novel diffusion conditions with fewer examples
In this paper, we delve into a novel aspect of learning novel diffusion conditions with datasets an order of magnitude smaller. The rationale behind our approach is the elimination of textual constraints during the few-shot learning process. To that end, we implement two optimization strategies. The...
محفوظ في:
المؤلفون الرئيسيون: | YU, Yuyang, LIU, Bangzhen, ZHENG, Chenxi, XU, Xuemiao, ZHANG, Huaidong, HE, Shengfeng |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9774 https://ink.library.smu.edu.sg/context/sis_research/article/10774/viewcontent/Yu_Beyond_CVPR_2024_paper.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
MosaicFusion: diffusion models as data augmenters for large vocabulary instance segmentation
بواسطة: Xie, Jiahao, وآخرون
منشور في: (2025) -
DreamAnime: Learning style-identity textual disentanglement for anime and beyond
بواسطة: XU, Chenshu, وآخرون
منشور في: (2024) -
TF-ICON: diffusion-based training-free cross-domain image composition
بواسطة: Lu, Shilin, وآخرون
منشور في: (2023) -
Exemplar based image colourization using diffusion models
بواسطة: Rahul, George
منشور في: (2024) -
Robust and imperceptible image watermarks in stable-diffusion image editing models
بواسطة: Xu, Qiran
منشور في: (2025)