DeLiDAR: Decoupling LiDARs for pervasive spatial computing

Unbounded proliferation of LiDAR-equipped pervasive devices generates two challenges: (a) mutual interference among emitters and (b) significantly higher sensing energy overhead. We propose a fundamentally different approach for LiDAR sensing, in indoor spaces, that decouples the sensor’s emitter an...

全面介紹

Saved in:
書目詳細資料
Main Authors: KANATTA GAMAGE RAMESH DARSHANA RATHNAYAKE, Sutradhar, Razat, Nishar, Abbaas A. M., Weerakoon Dulaj S., Ashok, Ashwin, MISRA, Archan
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2024
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/10122
https://ink.library.smu.edu.sg/context/sis_research/article/11122/viewcontent/mrose24_Delidar_av.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English
實物特徵
總結:Unbounded proliferation of LiDAR-equipped pervasive devices generates two challenges: (a) mutual interference among emitters and (b) significantly higher sensing energy overhead. We propose a fundamentally different approach for LiDAR sensing, in indoor spaces, that decouples the sensor’s emitter and receiver components. Our proposed approach, called DeLiDAR, centralizes the emitter functionality in one or more stationary nodes that continually emit pulses; this decoupling allows each mobile LiDAR sensor to be an ultra-low power, pure receiver unit consisting solely of passive multiple photodiodes. We explain how the emitter can utilize VLC-based encoding of its pulses to convey parameter settings that allow a receiver device to infer its own point cloud, without requiring any timing or clock synchronization with the emitter. An initial experimental setup, consisting of a Raspberry Pi and an Arduino-based emitter/2-diode receiver, demonstrates the ability to recover the light pulse’s AoA with a resolution of ±5◦. We also highlight key systems challenges to realize DeLiDAR in practice.