A Riemannian network for SPD matrix learning
Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting Riemannian geometry of underlying SPD manifolds. In this paper we build a Riemannian netwo...
محفوظ في:
المؤلفون الرئيسيون: | HUANG, Zhiwu, VAN, Gool L. |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/6542 https://ink.library.smu.edu.sg/context/sis_research/article/7545/viewcontent/A_riemannian_network_for_SPD_matrix_learning.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Building deep networks on grassmann manifolds
بواسطة: HUANG, Zhiwu, وآخرون
منشور في: (2018) -
Neural architecture search of SPD manifold networks
بواسطة: SUKTHANKER, R.S., وآخرون
منشور في: (2021) -
Explainable deep few-shot anomaly detection with deviation networks
بواسطة: PANG, Guansong, وآخرون
منشور في: (2021) -
Learning transferable deep convolutional neural networks for the classification of bacterial virulence factors
بواسطة: ZHENG, Dandan, وآخرون
منشور في: (2020) -
CLAIM: Curriculum learning policy for influence maximization in unknown social networks
بواسطة: LI, Dexun, وآخرون
منشور في: (2021)