Causal interventional training for image recognition
Deep learning models often fit undesired dataset bias in training. In this paper, we formulate the bias using causal inference, which helps us uncover the ever-elusive causalities among the key factors in training, and thus pursue the desired causal effect without the bias. We start from revisiting...
Saved in:
Main Authors: | QIN, Wei, ZHANG, Hanwang, HONG, Richang, LIM, Ee-Peng, SUN, Qianru |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2023
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/6743 https://ink.library.smu.edu.sg/context/sis_research/article/7746/viewcontent/CIT_final.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Causal classification of spatiotemporal quantum correlations in the absence of active interventions
由: Song, Min Jeong
出版: (2024) -
Towards unbiased visual emotion recognition via causal intervention
由: Chen, Yuedong, et al.
出版: (2023) -
Interventional few-shot learning
由: YUE, Zhongqi, et al.
出版: (2020) -
Deconfounded image captioning: a causal retrospect
由: Yang, Xu, et al.
出版: (2022) -
Multivariate linear and nonlinear causality tests
由: Bai, Z., et al.
出版: (2014)